纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 46-54.doi: 10.13475/j.fzxb.20220606009
LUO Hailin1, SU Jian2, JIN Wanhui3, FU Yaqin1()
摘要:
为缩短生丝加工流程并改进现有的缫丝成筒技术,在自动缫丝机基础上,借鉴络筒机的络交卷绕和张力控制等方法,开发出了一种新型的缫丝成筒设备及技术。通过正交分析法优化了缫丝成筒技术的工艺参数,并考察该缫丝成筒技术制备的缫丝成筒生丝与自动缫丝机制备的小䈅生丝和小䈅生丝经复摇、整理、泡丝、络筒等传统工序制备的传统筒装生丝在结构和性能上的差异。结果表明:对于选用的原料茧,当选择卷绕速度130 m/min、超喂比1.15、干燥温度90 ℃、油剂体积分数5%作为工艺参数时,该技术制备的缫丝成筒生丝同时具有相对较好的断裂强度、断裂伸长和抱合性能。缫丝成筒生丝的分子基团和结晶结构等微观结构、断裂伸长率、柔软性等力学性能与传统筒装生丝相近,而断裂强度、抱合指标要明显优于传统筒装生丝。新型缫丝成筒技术制备的筒装生丝优异的性能表明该技术具有良好的应用前景。
中图分类号:
[1] | 邵正中. 蚕丝、蜘蛛丝及其丝蛋白[M]. 北京: 化学工业出版社, 2015: 35. |
SHAO Zhengzhong. Silk, spider silk and silk pro-teins[M]. Beijing: Chemical Industry Press, 2015: 35. | |
[2] |
SONG Ruoyuan, KIMURA Teruo, INO Haruhiro. Papermaking from waste silk and its application as reinforcement of green composite[J]. Journal of Textile Engineering, 2010, 56(3): 71-76.
doi: 10.4188/jte.56.71 |
[3] |
ZHENG Haiyan, ZUO Baoqi. Functional silk fibroin hydrogels: preparation, properties and applications[J]. Journal of Materials Chemistry B, 2021, 9(5): 1238-1258.
doi: 10.1039/d0tb02099k pmid: 33406183 |
[4] | GORE Prakash, NAEBE Minoo, WANG Xungai, et al. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewate[J]. Journal of Hazardous Materials, 2022, 426: 1-18. |
[5] | KUNTAMALLA Sujatha, JANGA Sathish. A study on health problems faced by workers in silk industry[J]. International Journal of Entomology Research, 2017, 2(1): 76-78. |
[6] | 谭之虎. “直接缫丝”的关键技术丝条烘干装置的探索与研究:缫丝工艺及设备创新之二[J]. 四川丝绸, 2007(1): 12-16. |
TAN Zhihu. The key technology of "direct silk reeling": exploration and research of silk strip drying device-the second innovation of silk reeling technology and equipment[J]. Sichuan Silk, 2007(1): 12-16. | |
[7] | 戴冬冬. 短流程缫丝红外干燥技术的研究[D]. 杭州: 浙江理工大学, 2015: 1-59. |
DAI Dongdong. Research on the infrared drying technology of short process silk reeling[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 1-59. | |
[8] | 黄思思. 短流程小䈅生丝成筒工艺研究[D]. 杭州: 浙江理工大学, 2021: 1-27. |
HUANG Sisi. Research on the short process of raw silk on bobbins from small reels[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 1-27. | |
[9] | 徐广良. 筒子缫丝机结构性能的研究[J]. 辽宁丝绸, 1996(4): 9-11. |
XU Guangliang. Research on the structure and performance of the bobbin reeling machine[J]. Liaoning Silk, 1996(4): 9-11. | |
[10] | 张在钜. 关于生丝平行筒子卷绕的研究[J]. 丝绸, 1979, 16(10): 38-43. |
ZHANG Zaiju. Research on the parallel bobbin winding of raw silk[J]. Journal of Silk, 1979, 16(10): 38-43. | |
[11] | 储有弘. 500克卷装容量繅丝成筒一步工艺[J]. 丝绸, 1985, 22(5): 4-5. |
CHU Youhong. One-step process of the silk reeling onto a bobbin with a capacity of 500 grams[J]. Journal of Silk, 1985(5): 4-5. | |
[12] | 张善能. 气流式无张力自动缫丝机[J]. 丝绸, 1977, 14(8): 43-45. |
ZHANG Shanneng. Airflow tensionless automatic silk reeling machine[J]. Journal of Silk, 1977(8): 43-45. | |
[13] | 周海观, 孙秉熔. 减小自动缫丝张力的方法和装置[J]. 丝绸, 2000, 37(5): 26-27. |
ZHOU Haiguan, SUN Bingrong. Method and device for reducing tension in automatic silk reeling[J]. Journal of Silk, 2000(5): 26-27. | |
[14] | 罗海林, 傅雅琴, 刘柯. 直接成筒缫丝的自动缫丝机结构设计[J]. 纺织学报, 2020, 41(8): 115-120. |
LUO Hailin, FU Yaqin, LIU Ke. Structural design of automatic silk reeling machine for silk winded onto bobbin directly[J]. Journal of Textile Research, 2020, 41(8): 115-120. | |
[15] | OKAJIMA Masaaki, SHIGETO Shigeto, KINOSHITA Haruo, et al. Influence of reeling conditions on reeling tension by multipurpose reeling machine[J]. The Journal of Silk Science and Technology of Japan, 2016, 24: 25-32. |
[16] | REDDY Aswatha, MAHESH Kulkarnineema. Distribution of reeling process parameters and performance in different silk reeling systems[J]. Man-Made Textiles in India, 2009, 52(6): 203-206. |
[17] | LEE Yongwoo. Silk reeling and testing manual[M]. Rome: Food and Agriculture Organization of the United Nations, 1999: 5-80. |
[18] | 单小红, 徐红. 真丝针织浸渍工艺的研究[J]. 新疆大学学报, 2002, 19(1): 123-127. |
SHAN Xiaohong, XU hong. Research on impregnation technology of silk knitting[J]. Journal of Xinjiang University, 2002, 19(1): 123-127. | |
[19] | LI Lina, BAI Shiqi, FU Yaqin. Effect of silk reeling velocity on the aggregation structure of raw silk[C]// Advanced Materials Research. Switzerland: Trans Tech Publications, 2011: 496-499. |
[20] | LIU Chen, SUN Jiaqi, SHAO Min, et al. A comparison of centrifugally-spun and electrospun regenerated silk fibroin nanofiber structures and properties[J]. The Royal Society of Chemistry, 2015, 5(119): 98553-99855. |
[21] | WANG Rui, ZHU Yaofeng, SHI Zhuo, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production, 2018(203): 492-497. |
[22] | TSUKADA Masuhiro, OBO Masahiro, KATO Hiroshi, et al. Structure and dyeability of bombyx mori silk fibers with different filament sizes[J]. Journal of Applied Polymer Science, 1996, 60(10): 1162-1619. |
[23] |
LU Qiang, HU Xiao, WANG Xiaoqin, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010, 6(4): 1380-1387.
doi: 10.1016/j.actbio.2009.10.041 pmid: 19874919 |
[24] |
SHAO Jianzhong, ZHENG Jinhuan, LIU Jinqiang, et al. Fourier transform raman and fourier transform infrared spectroscopy studies of silk fibroin[J]. Journal of Applied Polymer Science, 2005, 96(6): 1999-2004.
doi: 10.1002/(ISSN)1097-4628 |
[25] |
IRIDAG Yesim, KAZANCI Murat. Preparation and characterization of bombyx mori silk fibroin and wool keratin[J]. Journal of Applied Polymer Science, 2006, 100(5): 4260-4264.
doi: 10.1002/(ISSN)1097-4628 |
[26] |
KHAN Majiburrahman, TSUKADA Masuhiro, GOTOH Yasuo, et al. Physical properties and dyeability of silk fibers degummed with citric acid[J]. Bioresource Technology 2010, 101(21): 8439 -8844.
doi: 10.1016/j.biortech.2010.05.100 pmid: 20598526 |
[27] | 吕超目. 浸泡工艺对鲜茧丝品质的影响[D]. 杭州: 浙江理工大学, 2017: 9-49. |
LÜ Chaomu. Effects of soaking process on the quality of the fresh cocoon silk[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 9-49. | |
[28] | 许凤麟. 提高生丝柔软性的途径及影响因素的研究[D]. 杭州: 浙江理工大学, 2015: 10-49. |
XU Fenglin. Research on the ways and influencing factors of improving the softness of raw silk[D]. Hangzhou: Zhejiang Sci-Tech University, 2015:10-49. |
[1] | 许建梅, 潘璐璐, 伍冬平, 卞幸儿, 胡亿丰, 戴佳洋, 王雨静. 生丝传统检验与电子检测的碳足迹核算与评价[J]. 纺织学报, 2023, 44(04): 38-45. |
[2] | 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48. |
[3] | 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95. |
[4] | 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43. |
[5] | 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155. |
[6] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[7] | 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41. |
[8] | 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87. |
[9] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
[10] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
[11] | 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100. |
[12] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[13] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[14] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
[15] | 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62. |
|