纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 86-91.doi: 10.13475/j.fzxb.20211008006

• 纺织工程 • 上一篇    下一篇

经编单向导湿织物设计与结构优化

尹昂, 丛洪莲()   

  1. 江南大学 教育部针织技术工程研究中心, 江苏 无锡 214122
  • 收稿日期:2021-11-01 修回日期:2022-06-30 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 丛洪莲(1976—),女,教授,博士。主要研究方向为针织生产的数字化与智能化。E-mail:cong-wkrc@163.com
  • 作者简介:尹昂(1997—),男,硕士生。主要研究方向为现代纺织技术。
  • 基金资助:
    国家自然科学基金项目(11972172)

Design and structure optimization of warp knitted unidirectional moisture conducting fabrics

YIN Ang, CONG Honglian()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-11-01 Revised:2022-06-30 Published:2023-04-15 Online:2023-05-12

摘要:

为探究经编结构和原料配置对织物单向导湿性能的影响,对织物各梳栉的调整、原料的配置和织物结构进行选择。设计8个样品,通过对其水分管理性能研究对比后发现,内层纱线和外层纱线线密度差异越大,织物的单向导湿性能就越好。在原料配置方面,内侧选用5.6 tex(14 f)涤纶低弹丝,外侧选用8.3 tex(288 f)的涤纶低弹丝具有最佳的水分管理性能;而内层选用5.6 tex(14 f)的涤纶低弹丝,外层选用9.7 tex的棉纱具有较高的润湿时间和吸收率,但其内外层润湿时间差、最大润湿半径和扩散速度较低,会影响面料对人体的穿着舒适度。在结构方面,外层采用经绒组织,内层采用编链,其整体水分管理性能要优于内层采用经缎组织,且织物内层纱线垫纱成圈织针数越少有利于增强单向导湿性能。

关键词: 经编, 单向导湿, 原料配置, 织物结构, 差动毛细效应, 针织物设计

Abstract:

Objective This research is carried out in order to explore the influence of warp knitting structure and raw material configuration on the wet performance of fabrics.
Method This paper took differential capillary effect as the design principle, 5.6 tex (14 f)tex polyester, 8.3 tex (288 f)polyester, 9.7 tex cotton, 4.5 tex spandex as raw materials, and 8 sample fabrics were made on the HKS4EL knitting machine, with manufacturing specifications E28, width 1 066 mm, knitting machine speed is 550 r/min. In terms of structure, four warp structures were designed, GB1 used warp velvet structure and warp flat tissue, and GB2 used warp structure and warp satin tissue to form four structural configurations.
Results Water absorption rate shows that the lowest water content of the eight samples was higher than the top for most of the time in 120 s. The timely transfer of the liquid from the inside to the outside of the fabric reflects the better unidirectional conductive ability of the fabric. Moisture time shows that the wetting time at the top of the eight samples was greater than that at the bottom, which shows that the inner layer of the fabric can remain dry for a long time. It can be seen in the water absorption rate at the top of the samples is higher than that at the bottom(Fig. 5). The maximum wetting radius and propagation speed of the top of the fabric are basically greater than those at the bottom of the fabric(Fig. 6, Fig. 7), which reflects the fabric's good single-guide wet ability. In general, the maximum wetting radius and propagation speed of the fabric are affected by the fabric structure, fabric thickness and yarn type and the cumulative one-way transport index reflects how easily liquid wets in a fabric. The highest index of f6 of the eight types of fabrics, the maximum wetting radius and propagation speed of f6 were significantly higher than those in the other samples(Fig. 8). This is due to the relatively loose fabric structure used in the f6, The gap between the yarn is relatively large, and the line density of the two yarn materials used can form a poor capillary effect, it allows the liquid to quickly transmit to the outer layer; the overall water management capability of the fabric is shown in Fig. 9, the results fluctuate between 0.2 and 1.0. The overall water management capacity of f1, f3 and f5 is higher than that of f2, f4 and f8, which indicates that the inner layer is better than the satin structure, and the less the number of the fabric inner layer is beneficial to enhance the wet performance of the single guide.
Conclusion Through the comparison and evaluation of 8 samples, it is found that the factors affecting the wet performance are the difference of the inner and outer yarn, the yarn density difference, and the structure and thickness of the fabric. In different raw material configurations, although the sample containing cotton yarn has good wetting time and absorption rate, its low wetting time difference, maximum wetting radius and diffusion speed will affect the comfort of the fabric to the human body, the fabric containing spandex will increase the tightness of its fabric, and the overall water management ability is reduced by about 10% under the same structure. In the configuration of different structures, it can be found that the overall water management performance of the inner layer is better than the inner layer using the satin tissue, which reduces the obstruction of moisture transport, and enhances the conduction of water in the fabric. Among all samples, the outer layer is closed horizontal tissue, and the inner layer is open horizontal tissue, the wet performance of single guide is best.

Key words: warp knitting, unidirectional moisture conduction, raw material configuration, fabric structure, differential capillary effect, fabric design

中图分类号: 

  • TS184

图1

涤纶DTY纱线纵向放大图"

表1

样品基本参数"

样品
编号
原料 面密度/
(g·m-2)
厚度/
mm
f1 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
147 0.66
f2 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
149 0.64
f3 5.6 tex(14 f)涤纶
9.7 tex 棉
125 0.58
f4 5.6 tex(14 f)涤纶
9.7 tex 棉
111 0.61
f5 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
4.4 tex 氨纶
210 0.72
f6 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
4.4 tex 氨纶
239 0.67
f7 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
4.4 tex 氨纶
244 0.80
f8 5.6 tex(14 f)涤纶
8.3 tex(288 f)涤纶
4.4 tex 氨纶
267 0.75

图2

样品结构配置"

图3

120 s内样品的内外层的水含量变化"

表2

样品内外层润湿时间"

类型 顶面 底部
f1 1.225 0.325
f2 1.737 0.304
f3 2.825 2.633
f4 2.752 2.634
f5 4.882 0.325
f6 2.565 0.300
f7 4.653 2.096
f8 3.065 0.310

图4

样品内外层吸水速率"

图5

样品内外层最大润湿半径"

图6

样品内外层扩散速度"

图7

样品累计单项运输指数"

图8

样品整体水分管理性能"

[1] 马磊. 吸湿排汗纺织产品开发现状与发展趋势[J]. 纺织导报, 2017(9): 22-24.
MA Lei. Current status and development trend of wet and sweat textile products[J]. China Textile Leader, 2017(9): 22-24.
[2] 李煜炜, 王永锋, 王慧云, 等. 异形截面涤纶包芯纱织物的吸湿快干性能研究[J]. 棉纺织技术, 2021(5):29-32.
LI Yuwei, WANG Yongfeng, WANG Huiyun, et al. Study on moisture absorption and fast drying properties of heterogeneous cross-section polyester core yarn fabric[J]. Cotton Textile Technology, 2021(5):29-32.
[3] HATAMLOU M, OZGUNEY A T, OZDIL N. Performance of recycled PET and conventional PES fibers in case of water transport properties[J]. Industria Textila, 2020, 71(6): 538-544.
doi: 10.35530/IT
[4] 龙晶, 沈兰萍. 云母/CoolMax/棉纤维吸湿速干型凉爽织物的开发[J]. 现代纺织技术, 2020(4):42-45.
LONG Jing, SHEN Lanping. Development of mica/ coolmax/ cotton fiber moisture absorption fast dry type cool fabric[J]. Modern Textile Technology, 2020(4):42-45.
[5] 胡方信, 徐志祥. 一次成型单向导湿双针床经编面料及其制备方法:201811634058.6[P]. 2019-03-01.
HU Fangxin, XU Zhixiang. One-forming single guide wet double needle bed warp fabric and its preparation method:201811634058.6[P]. 2019-03-01.
[6] YANG Tong, YU Haifan, LIU Yuying, et al. The unidirectional wettability property of a new warp-knitted double-face fabric[J]. Technology - Fiber and Polymer Science, 2020, 21(8):1627-1633.
[7] 冒海文, 缪旭红, 陈晴, 等. 涤纶长丝仿棉经编运动面料的生产工艺[J]. 纺织学报, 2015, 36(1);39-42.
MAO Haiwen, MIAO Xuhong, CHEN Qing, et al. Production process of polyester filament warp knitted sportswear fabric with high simulated cotton appea-rance[J]. Journal of Textile Research, 2015, 36(1):39-42.
[8] 江燕婷, 严庆帅, 辛斌杰, 等. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(5): 51-58.
JIANG Yanting, YAN Qingshuai, XIN Binjie, et al. Comparative study on testing methods for unidirectional water transport in fabrics[J]. Journal of Textile Research, 2021, 42(5): 51-58.
doi: 10.1177/004051757204200109
[9] 许瑞超, 张一平, 陈莉娜. 针织运动面料的差动毛细导湿性[J]. 纺织学报, 2007, 28(3): 20-22.
XU Ruichao, ZHANG Yiping, CHEN Lina. Properties of differential capillary effect of knitted sportswear fabrics[J]. Journal of Textile Research, 2007, 28(3): 20-22.
[10] 王其, 冯勋伟. 差动毛细效应模型及应用[J]. 东华大学学报, 2001, 27(3):54-57.
WANG Qi, FENG Xunwei. Differential capillary effect model and its application[J]. Journal of Donghua University, 2001, 27(3):54-57.
[11] 范菲, 齐宏进. 织物孔径特性与织物结构及芯吸性能的关系[J]. 纺织学报, 2007, 28(7):38-41.
FAN Fei, QI Hongjin. Relationship between capillary properties and configurations and wicking capability of fabric[J]. Journal of Textile Research, 2007, 28(7):38-41.
[12] 王建平, 朱雯喆, 党敏. 吸湿速干纺织产品性能评价中的标准适用性问题[J]. 纺织导报, 2017(10):107- 110,112-113.
WANG Jianping, ZHU Wenzhe, DANG Min. Applicability of standards in performance evaluation of wet absorption dry textile products[J]. China Textile Leader, 2017(10): 107-110,112-113.
[13] 周峰. 织物散湿性能测试方法及影响因素分析[D]. 上海: 东华大学, 2020:28.
ZHOU Feng. Test method and influencing factors of fabric dispersion performance[D]. Shanghai: Donghua University, 2020:28.
[1] 陈志昊, 包文杰, 李富才, 静波, 黄朝林, 孙建文. 基于快速自适应经验模态分解的高速经编机振动分析[J]. 纺织学报, 2023, 44(04): 204-211.
[2] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[3] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[4] 郑宝平, 蒋高明. 基于云服务器的经编机数据管理系统设计[J]. 纺织学报, 2022, 43(07): 186-192.
[5] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[6] 蒋高明, 程碧莲, 万爱兰, 李炳贤. 短纤纱经编织物生产关键技术研究进展[J]. 纺织学报, 2022, 43(05): 7-11.
[7] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[8] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[9] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
[10] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[11] 邹亚男, 夏风林, 董智佳, 黄梦婷, 储开元. 经编全成形脖套的结构设计与工艺实现[J]. 纺织学报, 2021, 42(12): 76-80.
[12] 郑宝平, 蒋高明, 夏风林, 张爱军. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(09): 163-169.
[13] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[14] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[15] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!