纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 112-118.doi: 10.13475/j.fzxb.20220100801

• 纺织工程 • 上一篇    下一篇

基于二分K-means理论的织机了机预测

彭来湖1, 唐麒麟1, 戴宁1,2(), 胡旭东1   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2022-01-05 修回日期:2022-10-08 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 戴宁(1991—),男,博士。主要研究方向为纺织装备智能控制技术。E-mail:990713260@qq.com。
  • 作者简介:彭来湖(1980— ),男,副教授,博士。主要研究方向为纺织装备技术及智能制造。
  • 基金资助:
    浙江省博士后科研项目择优资助一等资助项目(ZJ2021038);浙江省博士后科研项目特别资助项目(ZJ2020004)

Prediction of loom machine status based on binary K-means theory

PENG Laihu1, TANG Qilin1, DAI Ning1,2(), HU Xudong1   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering( International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-01-05 Revised:2022-10-08 Published:2023-05-15 Online:2023-06-09

摘要:

织布车间内各机台的排产方案与纺织企业生产效率密切相关,为解决现有织机了机时间主要依靠人工经验且难预测导致的排产不及时、不合理等问题,提出一种基于K均值理论的了机预测算法,通过建立织机了机预测理论模型把喷气织机生产全过程合理分为5个生产状态,并按时间序列记录车间内织机生产过程的实时生产状态信息等数据,最后通过Python内置数学处理模块进行求解。结果表明:预测了机时间及实际了机时间之间误差较小,证明了机预测理论模型的正确性,且最大绝对误差不超过2 h,满足织布车间排产所需的时效性及准确性要求。此外,该了机预测模型对具有相似工序的喷水、剑杆等纺机设备同样适用,具有工程应用价值。

关键词: 织机, 排产, 了机预测, 二分K-means理论, 织造工艺

Abstract:

Objective Each machine used in the weaving workshop production scheduling scheme is closely related to the textile enterprise production efficiency. In order to solve the problem of existing loom machine caused by time depending on human experience and hard to predict production scheduling, this paper, through the study of dynamic loom weaving process of actual production data prediction algorithm, puts forward a kind of loom machine to help production personnel according to the loom machine time, determines the best production scheduling strategy of the whole production line, improves the production efficiency of the production line and increases the profit of the enterprise. This method does not depend on hardware cost, greatly improves enterprise profit, and is easy to be implemented.

Method This paper proposes a machine prediction algorithm based on K-means theory. Taking each loom in the weaving workshop as the object, the whole production process of air-jet loom is reasonably divided into five production states by establishing the theoretical model of loom machine prediction. In addition, the dynamic data (weaving yield, sampling time point, current shift, remaining yarn length, variety number) and static data (warp axis number, set axis length) of loom machine production process in the workshop were recorded in time sequence, and the 7-dimensional vector matrix X was established as the original data sample set. Finally, the problem was solved by Python built-in mathematical processing module.

Results The time series data of characteristic samples in a certain period of time in the actual production process of the equipment were input into the dichotomous K-means algorithm with a clustering index of 5. The algorithm divided the production state data into five clusters, and the orange point was the centroid of the corresponding cluster region. According to the production characteristics, the predicted value of the remaining machine time of the loom machine at this time can be calculated. Sample data of 10 loom machines (the time period of complete production of a warp shaft) were randomly selected from 480 loom equipment in the workshop. The sample data were input into the algorithm to calculate the predicted values of 144 h, 96 h, 84 h, 72 h and 24 h from the actual loom machine and compare the calculation errors with the actual machine values. The results showed that with the passage of time and the accumulation of data. The error between the predicted loom machine value and the actual loom machine value calculated by the dichotomous algorithm model gradually decreased, and the average error of the predicted loom machine value was less than 0.9 h within 72 h before the machine.

Conclusion The data results show that the error between the predicted loom machine time and the actual loom machine time is small, which proves the correctness of the theoretical model of loom machine prediction, and the maximum absolute error is not more than 0.9 h (far less than the 2 h error required for production scheduling), which meets the timeliness and accuracy required for production scheduling in the weaving workshop. In addition, the weaving machine prediction algorithm based on bisection K-means theory established in this paper needs to be built on the accuracy and integrity of the data collected by the equipment. Therefore, in the future, we should start to ensure the full coverage of the weaving workshop network and stable and efficient data collection and transmission mode. Although theoretical model of the machine does not support the prediction of warping and sizing equipment, it is also applicable to the spinning machine equipment with similar processes, such as water spraying and rapier type, and has important engineering application value.

Key words: loom, production scheduling, machine prediction, binary K-means, weaving process

中图分类号: 

  • TS103

图1

聚类效果"

图2

织造生产工艺流程"

图3

预处理流程图"

图4

缩率计算流程图"

表1

不同聚类指标K下的误差值"

聚类参
K
采样点
a
采样点
b
采样点
c
采样点
d
采样点
e
采样点
f
2 15.313 17.851 16.761 13.647 10.436 6.959
3 10.154 8.449 5.992 3.613 3.828 1.101
4 8.497 3.551 2.799 1.708 1.034 0.392
5 6.878 3.686 1.884 0.893 0.626 0.383
6 10.246 10.954 6.448 6.106 3.419 2.647

图5

原始数据"

图6

聚类后数据"

图7

平均产能分布图"

表2

样本数据"

样本序列 设备号 经轴号 开始时间 结束时间 总耗时/h
1 178 H213-012 2021-04-28 07:49:08 2021-05-14 20:56:34 397.12
2 041 H179-012 2021-04-26 12:19:40 2021-05-09 23:22:06 323.04
3 081 H850-012 2021-04-29 10:27:47 2021-05-15 05:09:50 378.70
4 164 4-19+148 2021-04-24 02:49:51 2021-05-05 02:56:14 264.11
5 739 H921-01+37 2021-04-30 07:47:26 2021-05-15 12:50:16 365.05
6 293 H154-148 2021-04-28 12:24:21 2021-05-13 00:08:05 347.73
7 254 H2012-148 2021-04-23 03:37:20 2021-05-05 15:12:55 299.59
8 669 X293-01 2021-04-22 15:41:43 2021-05-10 21:33:08 437.86
9 610 X117-012 2021-04-21 00:53:51 2021-05-02 20:05:13 283.19
10 316 H506-148 2021-04-25 00:05:52 2021-05-11 00:57:03 384.85

表3

不同时间段的了机预测值与实际值的误差"

样本
序列
设备
采样点a 采样点b 采样点c 采样点d 采样点e 采样点f
预测值 误差 预测值 误差 预测值 误差 预测值 误差 预测值 误差 预测值 误差
1 178 135.25 8.75 92.87 3.13 82.74 1.26 71.33 0.67 23.61 0.39 12.75 0.75
2 041 150.30 6.30 99.48 3.48 86.38 2.38 73.12 1.12 24.51 0.51 11.69 0.31
3 081 136.11 7.89 91.57 4.43 81.95 2.05 70.83 1.17 23.21 0.79 11.18 0.82
4 164 135.73 8.27 92.41 3.59 82.32 1.68 71.23 0.77 23.10 0.90 11.52 0.48
5 739 136.98 7.02 92.96 3.04 82.58 1.42 71.52 0.48 23.38 0.62 11.71 0.29
6 293 148.95 4.95 99.91 3.91 85.89 1.89 72.41 0.41 24.84 0.84 12.13 0.13
7 254 139.20 4.80 92.49 3.51 82.01 1.99 70.24 1.76 23.27 0.73 12.30 0.30
8 669 151.85 7.85 100.10 4.10 86.09 2.09 73.40 1.40 23.57 0.43 12.11 0.11
9 610 138.45 5.55 91.98 4.02 82.01 1.99 71.70 0.30 23.16 0.84 11.56 0.44
10 316 136.60 7.40 92.35 3.65 81.91 2.09 71.15 0.85 23.79 0.21 11.8 0.20
平均误差 6.878 3.686 1.884 0.893 0.626 0.383

图8

织机实时信息"

[1] 王玉亮, 于伟东. 毛精纺中织造质量的BP神经网络预报技术[J]. 东华大学学报(自然科学版), 2006(1): 84-88.
WANG Yuliang, YU Weidong. Forecasting technique of BP neural network in weaving processing of wool worsted[J]. Journal of Donghua University (Natural Science), 2006, 32(1): 84-88.
[2] 张晓侠, 刘凤坤, 买巍, 等. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(8):121-127.
ZHANG Xiaoxia, LIU Fengkun, MAI Wei, et al. Prediction of loom efficiency based on BP neural network and its improved algorithm[J]. Journal of Textile Research, 2020, 41(8): 121-127.
[3] 李自纳, 唐银敏, 吴延艳. 基于长短时记忆循环网络的塑料编织机故障诊断研究[J]. 塑料科技, 2020, 48(10):86-89.
LI Zina, TANG Yinmin, WU Yanyan. Research on rault diagnosis of plastic braiding machine based on long-short memory convolutional neural network[J]. Plastics Science and Technology, 2020, 48(10): 86-89.
[4] 许京. 利用数据挖掘工具分析喷气织机生产数据[J]. 天津纺织科技, 2018(2):38-40.
XU Jing. Data mining tools for air jet loom production data analysis[J]. Tianjin Textile Science and Technology, 2018(2):38-40.
[5] LUO Jianfei, LIN Weitie, CAI Xiaolong, et al. Optimization of nitrobacterial fermentation medium based on neural network and genetic algorithms[J]. Chinese Journal of Chemical Engineering, 2012, 20(5) : 950-957.
[6] 宋宏伟, 冯秀彦, 刘旭宁, 等. 神经网络技术在织机生产状况预测中的应用[J]. 河北科技大学学报, 2011, 32(3): 273-276.
SONG Hongwei, FENG Xiuyan, LIU Xuning, et al. Application of artificial neural network to prediction of loom production[J]. Journal of Hebei University of Science and Technology, 2011, 32(3):273-276.
[7] ZHANG H, WANG H. Distributed subdata selection for big data via sampling-based approach[J]. Computational Statistics & Data Analysis, 2021.DOI: 10.1016/j.csda.2020.107072.
doi: 10.1016/j.csda.2020.107072
[8] 陈凌翔. 纺织机械制造中大数据技术的应用研究[J]. 纺织报告, 2020, 39(6):60-61.
CHEN Lingxiang. Research on the application of big data technology in textile machinery manufacturing[J]. Textile Report, 2020, 39(6):60-61.
[9] 张缓缓, 马金秀, 景军锋, 等. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12):50-56.
ZHANG Huanhuan, MA Jinxiu, JING Junfeng, et al. Fabric defect detection based on improved weighted median filtering and K-means clustering[J]. Journal of Textile Research, 2019, 40(12): 50-56.
[10] 王林, 吴海桥, 郑友石. 一种改进的K均值聚类算法[J]. 科技信息, 2010(32):136-137.
WANG Lin, WU Haiqiao, ZHENG Youshi. An improved K-means clustering algorithm[J]. Science and Technology Information, 2010(32):136-137.
[1] 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72.
[2] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[3] 王罗俊, 彭来湖, 史伟民, 张伟中. 基于压电黏合体的电磁选针检测技术[J]. 纺织学报, 2022, 43(08): 167-175.
[4] 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182.
[5] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[6] 段金娟, 宣艾祺, 袁博, 李娜娜. 基于感性意象的并条机造型设计[J]. 纺织学报, 2022, 43(04): 160-166.
[7] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[8] 莫帅, 周长鹏, 李旭, 杨振宁, 刘辉华, 高瀚君. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(03): 160-167.
[9] 刘泽旭, 胥光申, 盛晓超, 代欣怡. 洛伦兹力磁悬浮织针驱动器设计与仿真[J]. 纺织学报, 2021, 42(11): 159-165.
[10] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[11] 黄锦波, 祝成炎, 张红霞, 洪兴华, 周志芳. 基于剑杆织机改造的三维间隔机织物工艺设计[J]. 纺织学报, 2021, 42(06): 166-170.
[12] 张子煜, 徐洋, 盛晓伟, 解国升. 基于统计能量分析的簇绒地毯织机高频噪声抑制[J]. 纺织学报, 2021, 42(03): 169-174.
[13] 李博, 胡凯, 金国光, 魏展, 畅博彦. 空间连杆引纬机构柔性铰间隙动态特性研究[J]. 纺织学报, 2021, 42(01): 145-153.
[14] 喻陈楠, 贾江鸣, 陈之威, 陈建能, 陈加友, 陆文韬. 新型剑杆织机引纬机构的反求建模与运动学仿真[J]. 纺织学报, 2021, 42(01): 154-161.
[15] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!