纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 13-20.doi: 10.13475/j.fzxb.20221205201

• 特约专栏:减污降耗染色新技术 • 上一篇    下一篇

单分散聚苯乙烯和聚(苯乙烯-co-苯乙烯磺酸钠)乳胶粒的制备及其喷墨流畅性

苏婧1, 关玉1,2,3, 付少海1,2,3()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    3.国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2022-12-27 修回日期:2023-02-20 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为数字喷墨印花技术。E-mail:shaohaifu@hotmail.com。
  • 作者简介:苏婧(1998—),女,博士生。主要研究方向为数字喷墨印花墨水。
  • 基金资助:
    国家自然科学基金项目(22278185);国家先进印染技术创新中心科研基金项目(ZJ2021A08)

Preparation and inkjet printing smoothness of monodisperse polystyrene and poly (styrene-co-styrene sulfonate) latex particles

SU Jing1, GUAN Yu1,2,3, FU Shaohai1,2,3()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. National Innovation Center of Advanced Dyeing and Finishing Technology, Taian, Shandong 271000, China
  • Received:2022-12-27 Revised:2023-02-20 Published:2023-05-15 Online:2023-06-09

摘要:

为探究颜料墨水中固体颗粒粒径与喷墨流畅性之间的关系,制备了不同粒径的单分散球形聚苯乙烯(PSt)和聚(苯乙烯-co-苯乙烯磺酸钠)(P(St-co-SS))乳胶粒,探究了乳胶粒大小与分散液储存稳定性和喷墨流畅性的关系,并结合有限元与密度泛函计算,从理论角度解释乳胶粒大小与电荷对其喷墨流畅性的影响。结果表明:通过控制引发剂、乳化剂或水溶性单体的加入量,成功制备不同粒径的单分散球形PSt和P(St-co-SS)乳胶粒;固含量为10%的PSt和P(St-co-SS)乳胶粒分散液在4~50 ℃温度范围内储存4个月后分散稳定性均大于96%;随着分散液中乳胶粒粒径的增大,分散液的抽滤流速逐渐降低,且相同粒径下P(St-co-SS)较PSt分散体系的抽滤流速更高;粒孔比的增大会导致分散液在孔道内的流动体积降低,最终造成滤孔的堵塞,而微粒上表面活性剂的脱吸附是造成相同粒径下PSt体系抽滤流畅性低于P(St-co-SS)体系的原因。

关键词: 聚苯乙烯, 聚(苯乙烯-co-苯乙烯磺酸钠), 乳胶粒, 喷墨流畅性, 单分散体系, 颜料墨水, 喷墨印花

Abstract:

Objective The smoothness of digital inkjet printing depends on the pigment ink's particle size, but at the moment, research on the relationship between particle size and flow primarily focuses on the suspension system of large particles, and the choice of pigment ink particle size is largely determined by engineering expertise. Consequently, it is crucial to develop a realistic particle size range appropriate for inkjet. However, most convenitional pigments are prepared by grinding or other physical methods, and their size and morphology distribution is relatively random, making quantitative research impossible.

Method As a new polymer, latex particle size is easy to control and the performance is stable, making it a suitable choice for the study of particle size and inkjet fluidity. Monodisperse spherical polystyrene (PSt) and poly(styrene-co-styrene sulfonate) (P(St-co-SS)) latex particles of different sizes were prepared by mini-emulsion polymerization and soap-free emulsion polymerization, respectively, which were configured into PSt latex particle dispersions and P(St-co-SS) latex particle dispersions. The relationships among latex particle size, storage stability and inkjet fluidity of the dispersions were investigated.

Results In this research, monodisperse spherical PSt and P(St-co-SS) latex particles with controllable particle size of 50-250 nm were successfully prepared by changing the addition of potassium persulfate (KPS), sodium dodecyl sulfate (SDS) and sodium p-styrene sulfonate (SS) in the reaction components. The prepared latex particles were uniform in size and had a spherical structure (Fig.2). The results of storage stability tests suggested the temperature range of 4-50 ℃ for PSt latex particle dispersion and P(St-co-SS) latex particle dispersion, respectively (Fig.4). It was seen that the storage stability of both PSt and P(St-co-SS) latex particle dispersions was higher than 96% in this temperature range, and that the smaller the particle size of latex particles, the better the storage stability of the dispersions. Subsequently, the dispersion was filtered using a filter membrane with an absolute pore size of 1 μm, and the results of the filtration rate reals that the filtration flow rate of the dispersion became higher as the particle porosity ratio decreased (Fig.5). When the particle porosity of the PSt and P(St-co-SS) systems was smaller than 8.5% and 9.5%, respectively, the filtration flow rate of the dispersion appeared to be higher than 2 mL/s. DFT simulation was carried out using the finite element analysis method. The results from the simulations showed that the increase of the particle porosity ratio led to the decrease of the actual dispersion flow radius (Fig.6), which eventually resulted in blockage of the filter membrane pores. Direct grafting of sulfonic acid groups on the particle surface provided more effective mutual repulsion between particles than adding dispersant, thus better hindering the agglomeration and sinking of particles in high-speed flow and increasing the flow of the dispersion (Fig.7).

Conclusion In the case of particles dispersed by dispersant alone at a solid content of 8.5%, the dispersion is essentially unable to flow when the particle porosity ratio exceeds 10%, while P(St-co-SS) latex particle has a fixed sulfonic acid group on its surface, that the particle porosity ratio threshold can rise to about 9.5%. Meanwhile, grafting or modifying the surface of the particles with hydrophilic functional groups enables better cold or hot storage stability of the particles as opposed to adding surfactants to the dispersion. Therefore, an appropriate reduction in solid particle size together with an increase in the number of particles with hydrophilic functional groups can improve the dispersion storage and the inkjet printing smoothness.

Key words: polystyrene, poly(styrene-co-styrene sulfonate), latex particle, inkjet printing smoothness, monodisperse system, pigment ink, inkjet printing

中图分类号: 

  • F767.4

图1

乳胶粒浓缩液的制备过程"

表1

乳胶粒粒径大小与粒度分布"

乳胶粒名称 粒径/nm PDI值
PSt 55 0.037
73 0.022
117 0.007
159 0.050
238 0.035
P(St-co-SS) 53 0.050
73 0.019
97 0.006
157 0.029
244 0.050

图2

不同粒径PSt和P(St-co-SS)乳胶粒的场发射扫描电镜照片"

图3

PSt和P(St-co-SS)乳胶粒分散液的黏度"

图4

PSt和P(St-co-SS)乳胶粒分散液的储存稳定性"

图5

不同粒孔比下乳胶粒分散液的抽滤流速"

表2

乳胶粒粒径与滤膜孔径比"

PSt粒径/nm 粒孔比/% P(St-co-SS)
粒径/nm
粒孔比/%
55 5.5 53 5.3
73 7.3 73 7.3
117 11.7 97 9.7
159 15.9 157 15.7
238 23.8 244 24.4

图6

乳胶粒分散液通过滤膜孔道时自下向上流动的颗粒轨迹"

图7

乳胶粒分散液中各组分间结合能与静电势"

[1] CAI H, MIAO G Q. Laminar and turbulent flows in a vibrated granular system[J]. Powder Technology, 2021, 380: 89-95.
doi: 10.1016/j.powtec.2020.11.025
[2] GUAZZELLI E, POULIQUEN O. Rheology of dense granular suspensions[J]. Journal of Fluid Mechanics, 2018. DOI: 10.1017/jfm.2018.548.
doi: 10.1017/jfm.2018.548
[3] YANG Y, LI M, FU S H. Colored cotton fabric with hydrophobicity prepared by monodispersed cationic colored polymer nanospheres[J]. Colloid and Polymer Science, 2021, 299: 1371-1381.
doi: 10.1007/s00396-021-04855-0
[4] YANG Y, LI M, FU S H. Screen-printed photochromic textiles with high fastness prepared by self-adhesive polymer latex particles[J]. Progress in Organic Coatings, 2021. DOI: 10.1016/j.porgcoat.2021.106348.
doi: 10.1016/j.porgcoat.2021.106348
[5] YANG Y, LI M, FU S H. Monodispersed colored polymer latex particles with film formation and chemical crosslinking for application on textile binder-free printing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126527.
doi: 10.1016/j.colsurfa.2021.126527
[6] LI M, ZHANG L P, WANG D T, et al. Influence of nano-coated pigment ink formulation on ink-jet printability and printing accuracy[J]. Coloration Technology, 2017, 133: 476-484.
doi: 10.1111/cote.2017.133.issue-6
[7] LEELAJARIYAKUL S, NOGUCHI H, KIATKAMJORNWONG S. Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics[J]. Progress in Organic Coatings, 2008, 62: 145-161.
doi: 10.1016/j.porgcoat.2007.10.005
[8] FU S H, FANG K J, ZHANG X, et al. Preparation of waterborne nanoscale pigment dispersions for formulation of inkjet inks[J]. Journal of Imaging Science and Technology, 2008. DOI: 10.2352/J.ImagingSci.Technol.(2008)52:5(050501).
doi: 10.2352/J.ImagingSci.Technol.(2008)52:5(050501)
[9] HWANG Y, LEE J K, LEE C H, et al. Stability and thermal conductivity characteristics of nanofluids[J]. Thermochimica Acta, 2007, 455: 70-74.
doi: 10.1016/j.tca.2006.11.036
[10] BABU J A R, KUMAR K K, RAO S S. State-of-art review on hybrid nanofluids[J]. Renewable & Sustainable Energy Reviews, 2017, 77: 551-565.
[11] ZANINETTI L. Relativistic motion with viscosity: II: stokes's law of resistance[J]. International Journal of Astronomy and Astrophysics, 2021, 11: 2161-4717.
[12] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. Journal of Chemical Physics, 1999, 110: 6158-6170.
doi: 10.1063/1.478522
[13] MCLEAN A D, CHANDLER G S. Contracted Gaussian basis sets for molecular calculations: I:second row atoms, Z=11-18[J]. The Journal of Chemical Physics, 1980, 72: 5639-5648.
doi: 10.1063/1.438980
[14] KRISHNAN R, BINKLEY J S, SEEGER R, et al. Self-consistent molecular orbital methods: XX: a basis set for correlated wave functions[J]. The Journal of Chemical Physics, 1980, 72: 650-654.
doi: 10.1063/1.438955
[15] THOM H D J, HAY P J. Methods of electronic structure theory[M]. New York: Springer Press, 1977: 1-27.
[16] CHANG C I, LEE W J, YOUNG T F, et al. Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes[J]. Journal of Chemical Physics, 2008. DOI: 10.1063/1.2897931.
doi: 10.1063/1.2897931
[17] ZHU Y, WU G. Preparation of monodisperse polystyrene nanoparticles with tunable sizes based on soap-free emulsion polymerization technology[J]. Colloid and Polymer Science, 2021, 299: 73-79.
doi: 10.1007/s00396-020-04766-6
[18] KIM H J, HONG J P, KIM M J, et al. Improving the digital to garment inkjet printing properties of cotton by control the butyl acrylate content of the surface treatment agent[J]. Applied Surface Science, 2022. DOI: 10.1016/j.apsusc.2021.152322.
doi: 10.1016/j.apsusc.2021.152322
[19] SAFRANYIK F, OLDAL I. Analytical approach of funnel flow discharge[J]. Journal of Mechanical Science and Technology, 2021, 35: 635-640.
doi: 10.1007/s12206-021-0123-1
[1] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[2] 肖明, 黄亮, 罗龙永, 毕曙光, 冉建华. 羧基化聚苯乙烯荧光微球的合成及其在织物防伪中的应用[J]. 纺织学报, 2023, 44(02): 184-190.
[3] 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108.
[4] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[5] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
[6] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[7] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[8] 李畅, 房宽峻, 刘秀明, 安芳芳, 梁迎超, 刘昊. 疏水体系中阳离子改性对棉/聚酰胺织物表面墨滴铺展的影响[J]. 纺织学报, 2021, 42(09): 112-119.
[9] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[10] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[11] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[12] 侯学妮, 陈国强, 邢铁玲. 活性墨水流体特性对喷射性能的影响[J]. 纺织学报, 2020, 41(03): 91-99.
[13] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[14] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[15] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!