纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 139-146.doi: 10.13475/j.fzxb.20210603501

• 纺织工程 • 上一篇    下一篇

一种高鲁棒性经编机上断纱在线检测算法

杨宏脉1, 张效栋1(), 闫宁1, 朱琳琳1, 李娜娜2   

  1. 1.天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
    2.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2021-06-10 修回日期:2022-04-18 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 张效栋(1982—),男,教授,博士。主要研究方向为视觉检测、人工智能等。E-mail:zhangxd@tju.edu.cn。
  • 作者简介:杨宏脉(1996—),男,硕士生。主要研究方向为计算机视觉与精密测量。

Robustness algorithm for online yarn breakage detection in warp knitting machines

YANG Hongmai1, ZHANG Xiaodong1(), YAN Ning1, ZHU Linlin1, LI Na'na2   

  1. 1. Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-06-10 Revised:2022-04-18 Published:2023-05-15 Online:2023-06-09

摘要:

为检测经编机编织过程中产生的断纱问题,提出了以图像维度转换为基础的复合检测算法。首先通过不同时刻拍摄的多张图像生成一张包含时域信息的特征增强图像,以减少环境噪声带来的影响,并极大程度保持了断纱位置时域与频域的特征;然后使用小波变换的方式对增强图像进行断纱检测,在保证检出的情况下提升了检测速度;最后对检测到缺陷的位置使用深度学习的方式再进行一次检测以提升整体算法的鲁棒性。实验结果表明,本文算法可有效地检测不同工艺多类型纹理织物的断纱特征,相对于传统算法时效性与鲁棒性都得到很大程度的提高,能够满足工业场景下断纱检测的需要。

关键词: 经编机, 断纱检测, 小波变换, 图像处理, 深度学习

Abstract:

Objective For warp knitting machines, yarn breakage is inevitable in the working process. When a yarn breakage occurs, the warp knitting machine should be stopped immediately for yarn repair so as to avoid causing fabric defects. However, because the yarn diameter is only tens of microns, and tens of thousands of yarns are knitted at high speed at the same time in the knitting process, it brings great difficulties to the online detection of yarns in warp knitting machines.

Method Aiming at the above problem, this paper proposes a composite detection algorithm. Firstly, the defect feature enhancement method based on dimension transformation was adopted to enhance the stability of the algorithm by data processing. Secondly, on the basis of dimensional transformation data, a yarn breakage detection algorithm based on wavelet transformation was proposed, and the gray level transformation rule of the image was analyzed from the perspective of time domain to realize defect detection. Finally, deep learning was adopted to further improve the robustness of the algorithm.

Results To verify the effectiveness of the proposed algorithm, the detection system was built in KARL MAYER RD7/2-12 warp knitting machine (Fig.8). Ten cameras were adopted to shoot at a distance of 1 m. Five groups of experiments were carried out to verify the feasibility of the algorithm under different processing conditings (Tab.1). The first group of data was taken as an example and the detection processes (Fig.10). Five sets of yarn breakage experiments were conducted on three different warp knitting machines, and the methods proposed in this paper can effectively identify yarn breakage. It is shown that the algorithm proposed in this paper can effectively detect yarn breakage. The algorithm proposed in this paper was comared with STL (time series decomposition algorithm) and wavelet decomposition algorithm (Tab.2). The timeliness of different algorithms was analysed, indicating that the conventional STL decomposition algorithm had the worst timeliness (Tab.2). The proposed method and wavelet decomposition showed better timeliness, and it also proved that the introduction of deep learning had no impact on the timeliness of the algorithm. About 120 h of continuous experiment was set to verify the stability of the algorithm proposed in this paper, compared with other algorithms, the missed detection rate and the false detection rate were both decreased (Fig.11).

Conclusion Aiming at the problem of online detection of broken yarn defects in warp knitting machines, this paper proposes a robustness detection algorithm, which is proven to be feasible by a large number of experiments. An innovative method of weak defect feature enhancement based on dimension transformation is proposed to overcome the degradation of detection stability caused by various weaving processes and serious external noise interference.The problem of restricting the accuracy and timeliness of broken yarn detection on warp knitting machines has been solved. The proposed algorithm has important implications for textile defect detection. At the same time, the proposed algorithm is expected to promote the further development of textile industry towards automation and intelligence.

Key words: warp knitting machine, yarn breakage detection, wavelet transformation, image processing, deep learning

中图分类号: 

  • TS101

图1

基于反射定律的断纱凸显方法"

图2

算法流程框图"

图3

维度转换流程图"

图4

基于小波分解的缺陷定位算法"

图5

小波变换提取阶跃特征原理"

图6

基于深度学习的断纱检测流程图"

图7

Yolov4网络模型"

图8

断纱缺陷在线检测系统"

表1

经编机工艺参数"

实验编号 纱线直径/μm 经编工艺
M1T1 75 满穿
M1T2 75 一穿一空
M2T3 30 一穿一空
M2T4 75 五穿一空
M3T5 75 满穿

图9

断纱图像"

图10

M1T1有效性实验"

表2

时效性实验"

实验
组号
STL分解算法 小波分解算法 复合算法
帧数 时间/s 帧数 时间/s 帧数 时间/s
M1T1 55 9 31 5 31 5
M1T2 57 10 32 5 32 5
M2T3 60 10 34 6 34 6
M2T4 54 9 30 5 30 5
M3T1 56 9 30 5 30 5

表3

四梳节经编机的参数"

机速/(r·min-1) 梳节编号 纱线直径/μm 经编工艺
583 T1 75 满穿
T2 30 满穿
T3 75 五穿一空
T4 75 五穿一空

图11

算法的鲁棒性实验"

[1] 夏风林, 葛明桥, 蒋高明. 高速经编机梳栉横移运动的优化设计[J]. 纺织学报, 2009, 30(5):118-121.
XIA Fenglin, GE Mingqiao, JIANG Gaoming. Optimizing design of shogging motion of the guide bar on high speed warp knitting machine[J]. Journal of Textile Research, 2009, 30(5): 118-121.
doi: 10.1177/004051756003000202
[2] 秦志刚, 龙海如, 马晓红. 玻璃纤维经编针织物的编织工艺分析[J]. 纺织学报, 2008, 29(5):46-50.
QIN Zhigang, LONG Hairu, MA Xiaohong. Analysis of knitting technologies of warp knitted glass fiber fabrics[J]. Journal of Textile Research, 2008, 29(5): 46-50.
[3] MEI S, WANG Y, WEN G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model[J]. Sensors, 2018.DOI: 10.3390/s18041064.
doi: 10.3390/s18041064
[4] CARVALHO V, PINTO J G, MONTEIRO J L, et al. Yarn parameterization based on mass analysis[J]. Sensors and Actuators A: Physical, 2004, 115(2/3): 540-548.
doi: 10.1016/j.sna.2004.04.045
[5] LU W, LU X, ZHU C, et al. Solving three key problems of the SAW yarn tension sensor[J]. IEEE Transactions on Electron Devices, 2012, 59(10): 2853-2855.
doi: 10.1109/TED.2012.2209427
[6] MUSA E. Line laser-based break sensor that detects light spots on yarns[J]. Optics and Lasers in Engineering, 2009, 47(7-8): 741-746.
doi: 10.1016/j.optlaseng.2009.03.009
[7] MUSA E. Line-laser-based yarn shadow sensing break sensor[J]. Optics and Lasers in Engineering, 2011, 49(3): 313-317.
doi: 10.1016/j.optlaseng.2010.10.003
[8] YAN N, ZHU L, YANG H, et al. Online yarn breakage detection: a reflection-based anomaly detection method[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[9] CHAN C, PANG G K H. Fabric defect detection by Fourier analysis[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1267-1276.
doi: 10.1109/28.871274
[10] BODNAROVA A, BENNAMOUN M, LATHAM S. Optimal gabor filters for textile flaw detection[J]. Pattern Recognition, 2002, 35(12): 2973-2991.
doi: 10.1016/S0031-3203(02)00017-1
[11] HU G H, ZHANG G H, WANG Q H. Automated defect detection in textured materials using wavelet-domain hidden markov models[J]. Optical Engineering, 2014.DOI: 10.1117/1.OE.53.9.093107.
doi: 10.1117/1.OE.53.9.093107
[12] WEI B, HAO K, TANG X, et al. A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes[J]. Textile Research Journal, 2019, 89(17): 3539-3555.
doi: 10.1177/0040517518813656
[13] ZHAO Z, GUI K, WANG P. Fabric defect detection based on cascade faster R-CNN[C]. Proceedings of the 4th International Conference on Computer Science and Application Engineering. Springer: plano, 2020: 1-6.
[14] LIU Z, CUI J, LI C, et al. Fabric defect detection based on lightweight neural network[C]// Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer: Cham, 2019: 528-539.
[1] 陈志昊, 包文杰, 李富才, 静波, 黄朝林, 孙建文. 基于快速自适应经验模态分解的高速经编机振动分析[J]. 纺织学报, 2023, 44(04): 204-211.
[2] 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175.
[3] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[4] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[5] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[6] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[7] 张东剑, 甘学辉, 杨崇倡, 韩阜益, 刘香玉, 谈渊, 廖壑, 王松林. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194.
[8] 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160.
[9] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
[10] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[11] 马运娇, 王蕾, 潘如如, 高卫东. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(07): 55-59.
[12] 郑宝平, 蒋高明. 基于云服务器的经编机数据管理系统设计[J]. 纺织学报, 2022, 43(07): 186-192.
[13] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[14] 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159.
[15] 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!