纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 155-163.doi: 10.13475/j.fzxb.20220503201
王国琴1,2, 付小航1, 朱羽科1, 吴礼光1, 王挺1,2(), 蒋孝佳1,2, 陈华丽1
WANG Guoqin1,2, FU Xiaohang1, ZHU Yuke1, WU Liguang1, WANG Ting1,2(), JIANG Xiaojia1,2, CHEN Huali1
摘要:
为获得可见光响应的高效介孔TiO2光催化剂,利用软模板法制备了螺旋堆积的手性介孔TiO2。对比分析了手性介孔TiO2和非手性介孔TiO2的差异。通过自由基捕获实验和电子自旋共振 (ESR) 光谱,结合福井指数(f-)的计算探索了手性介孔TiO2降解罗丹明B(RhB)的机制和路径。结果表明,手性介孔TiO2的螺旋堆积结构引入了更多缺陷,从而其Ti3+和氧空穴的含量都高于非手性介孔TiO2,因此具有更强的可见光响应和降解活性,其对RhB的去除率超过非手性介孔TiO2的4倍;手性介孔TiO2降解有机污染物分子的主要活性物种是光生空穴h+;越容易给出电子的原子位点(即f-值越高)越容易受到h+的攻击发生降解;降解过程中中间产物分析进一步得到了可见光激发手性介孔TiO2降解RhB的主要路径。
中图分类号:
[1] |
孙培杰, 王林平, 徐乐瑾. 焦化废水中氰化物的处理技术研究进展[J]. 化工进展, 2021, 40(S1): 386-396.
doi: 10.16085/j.issn.1000-6613.2020-2556 |
SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 386-396.
doi: 10.16085/j.issn.1000-6613.2020-2556 |
|
[2] | 王纯, 王文龙, 刘鑫, 等. 印染废水处理过程中有机污染物及急性毒性变化规律研究[J]. 环境科学学报, 2019, 39(10): 3434-3441. |
WANG Chun, WANG Wenlong, LIU Xin, et al. Study on the removal of organic pollutants and acute toxicity variation in the process of dyeing wastewater treat-ment[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3434-3441. | |
[3] |
郭小熙, 田鹏飞, 孙杨, 等. 工业有机废水深度处理:非均相Fenton催化剂研究进展[J]. 化工进展, 2021, 40(2): 605-620.
doi: 10.16085/j.issn.1000-6613.42020-1404 |
GUO Xiaoxi, TIAN Pengfei, SUN Yang, et al. Tertiary treatment of industrial organic wastewater: development of heterogeneous Fenton catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 605-620.
doi: 10.16085/j.issn.1000-6613.42020-1404 |
|
[4] |
黄莉婷, 韩昫身, 金艳, 等. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9): 4881-4891.
doi: 10.11949/0438-1157.20210212 |
HUANG Liting, HAN Xushen, JIN Yan, et al. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment[J]. CIESC Journal, 2021, 72(9): 4881-4891.
doi: 10.11949/0438-1157.20210212 |
|
[5] | 刘婉岑, 宋堃铭, 张玉芬. 臭氧催化氧化深度处理造纸废水的试验研究[J]. 工业水处理, 2022, 42(1): 154-157. |
LIU Wancen, SONG Kunming, ZHANG Yufen. Advanced treatment paper-making wastewater by catalytic ozonation[J]. Industrial Water Treatment, 2022, 42(1): 154-157. | |
[6] | 许加海, 万树春, 王乃琳, 等. 石化高盐废水处理及零排放回用[J]. 工业水处理, 2020, 40(5): 122-125. |
XU Jiahai, WAN Shuchun, WANG Nailin, et al. Petrochemical high salinity wastewater treatment and zero discharge reuse[J]. Industrial Water Treatment, 2020, 40(5): 122-125. | |
[7] | 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2): 112-118. |
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018, 39(2): 112-118. | |
[8] | 施小平, 李瑶, 潘家豪, 等. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112. |
SHI Xiaoping, LI Yao, PAN Jiahao, et al. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction[J]. Journal of Textile Research, 2019, 40(10): 105-112. | |
[9] | 邓杨, 石现兵, 王涛, 等. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(3): 58-63. |
DENG Yang, SHI Xianbing, WANG Tao, et al. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe)[J]. Journal of Textile Research, 2022, 43(3): 58-63. | |
[10] |
TROJANOWICZ M, BOJANOWSKA-CZAJKA A, BARTOSIEWICZ I, et al. Advanced oxidation/reduction processes treatment for aqueous perfluoro-octanoate (PFOA) and perfluorooctanesulfonate(PFOS): a review of recent advances[J]. Chemical Engineering Journal, 2018, 336: 170-199.
doi: 10.1016/j.cej.2017.10.153 |
[11] |
LEE H, PARK Y K, KIM S J, et al. Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 205-210.
doi: 10.1016/j.jiec.2015.12.037 |
[12] | 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017, 37(12): 4593-4601. |
XU Zhiyong, LI Bingrui, PAN Jiahao, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4593-4601. | |
[13] | 宋英琦, 潘家豪, 吴礼光, 等. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 107-115. |
SONG Yingqi, PAN Jiahao, WU Liguang, et al. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light[J]. Journal of Textile Research, 2020, 41(12): 107-115. | |
[14] |
YANG Z F, XIA X N, SHAO L H, et al. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation[J]. Chemical Engineering Journal, 2021. DOI: 101016/j.cej.2021.128454.
doi: 101016/j.cej.2021.128454 |
[15] |
PANG C L, LINDSAY R, THORNTON G. Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces[J]. Chemical Reviews, 2013, 113(6): 3887-3948.
doi: 10.1021/cr300409r |
[16] |
WANG T, XU Z Y, ZHU Y C, et al. Preparation of weak-light-driven TiO2-based catalysts via adsorbed-layer nanoreactor synthesis and enhancement of their photo-degradation performance in seawater[J]. Applied Surface Science, 2017, 423: 528-537.
doi: 10.1016/j.apsusc.2017.06.177 |
[17] |
XING Z P, ZHANG J Q, CUI J Y, et al. Recent advances in floating TiO2-based photocatalysts for environmental application[J]. Applied Catalysis B: Environmental, 2018, 225: 452-467.
doi: 10.1016/j.apcatb.2017.12.005 |
[18] |
WU Q, MENG J Z, YAO H, et al. Thermal crosslinking synthesis of ethylene-vinyl acetate copolymer supported foating TiO2 photocatalyst: characterization and photocatalytic performance[J]. Environmental Science and Pollution Research, 2022.DOI:10.1007/s11356-022-19446-x.
doi: 10.1007/s11356-022-19446-x |
[19] |
GABASHVILI A, MAJOR D T, PERKAS N, et al. The sonochemical synthesis and characterization of mesoporous chiral titania using a chiral inorganic precursor[J]. Ultrason Sonochem, 2010, 17(3): 605-609.
doi: 10.1016/j.ultsonch.2009.10.019 pmid: 19942471 |
[20] |
STROYUK O L, ERMOKHINA N I, KORZHAK G V, et al. Photocatalytic and photoelectrochemical properties of hierarchical mesoporous TiO2 microspheres produced using a crown template[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334: 26-35.
doi: 10.1016/j.jphotochem.2016.10.039 |
[21] |
WANG T, LI Y, WU W T, et al. Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photo-lysis[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.148025.
doi: 10.1016/j.apsusc.2020.148025 |
[22] | 付小航, 王林祥, 李瑶, 等. 可见光响应手性TiO2复合光催化剂及其降解有机污染物[J]. 环境科学学报, 2021, 41(12): 4862-4870. |
FU Xiaohang, WANG Linxiang, LI Yao, et al. Chiral TiO2-based photocatalysts with visible light response and their photodegradation for organic pollutes[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 4862-4870. | |
[23] | ZHU H W, SHANG Y S, JING Y K, et al. Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage[J]. ACS Applied Materials & Interfaces, 2016, 8: 25586-25594. |
[24] | NAKANISHI K, BEROVA N, WOODY R W. Circular dichroism: principles and applications[M]. New York: Wiley-VCH, 2000:26-28. |
[25] |
TAKEHARA M, YOSHIMURA I, TAKIZAWA K, et al. Surface active N-acylglutamate: I: preparation of long chain N-acylglutamic acid[J]. Journal of the American Oil Chemists Society, 1972, 49: 157-161.
doi: 10.1007/BF02633785 |
[26] | 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017, 37(12): 4593-4601. |
XU Zhiyong, LI Bingrui, PAN Jiahao, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4593-4601. | |
[27] |
YU J G, WANG G H, CHENG B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B: Environmental, 2007, 69: 171-180.
doi: 10.1016/j.apcatb.2006.06.022 |
[28] | 邓辉, 蒋新. TiO2/SiO2的制备与光催化降解甲基橙[J]. 纺织学报, 2007, 28(9): 76-79, 83. |
DENG Hui, JIANG Xin. Preparation of TiO2/SiO2 and photo-catalytic degradation of methyl-orange[J]. Journal of Textile Research, 2007, 28(9): 76-79, 83. | |
[29] |
CHEN X, LIU L, HUANG F. Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 2015, 44(7): 1861-1885.
doi: 10.1039/c4cs00330f pmid: 25590565 |
[30] |
TATJANA D S, MIRJANA I C, NADICA D A, et al. Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): a combined DFT and experimental study[J]. Journal of Alloys and Compounds, 2015, 630: 226-235.
doi: 10.1016/j.jallcom.2015.01.041 |
[1] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[2] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[3] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[4] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
[5] | 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120. |
[6] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[7] | 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106. |
[8] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[9] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
[10] | 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60. |
[11] | 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201. |
[12] | 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
[13] | 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195. |
[14] | 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
[15] | 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121. |
|