纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 205-212.doi: 10.13475/j.fzxb.20211005501

• 机械与器材 • 上一篇    下一篇

机械式打结机纱线捕获状态检测方法

屠佳佳1,2, 李长征1, 戴宁1,3, 孙磊1, 毛慧敏1, 史伟民1()   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江机电职业技术学院 自动化学院, 浙江 杭州 310053
    3.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2021-10-26 修回日期:2022-04-02 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 史伟民(1965—),男,教授,博士。主要研究方向为纺织机械自动控制。E-mail:swm@zstu.edu.cn。
  • 作者简介:屠佳佳(1987—),男,副教授,博士生。主要研究方向为纺织机械智能检测与控制。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000);浙江省博士后科研项目择优资助一等资助项目(ZJ2021038);浙江理工大学科研启动基金项目(11150131722114)

Detection methods for yarn capture state with automatic knotter

TU Jiajia1,2, LI Changzheng1, DAI Ning1,3, SUN Lei1, MAO Huimin1, SHI Weimin1()   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. School of Automation, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou, Zhejiang 310053, China
    3. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-10-26 Revised:2022-04-02 Published:2023-05-15 Online:2023-06-09

摘要:

为解决机械式打结机在纱架上完成纱线接头时无法检测头线、尾线捕获状态的问题,提出一种基于图像像素点测量的检测方法。该方法结合机械式打结机工作原理,将集安装盒、相机模组和光源于一体的纱线检测识别系统,固定在风机和吸嘴之间的透明吸管上,然后通过小型嵌入式模块采集图像、处理图像、统计像素点、输出信号等流程实现低成本的纱线捕获状态检测。同时顶部安装相机模组,左右两侧安装光源,底部设计纱线通道,内部底板设计为左右均分的黑白背景,结构小巧、图像采集环境稳定。系统搭建后,对白色等8种纱线进行了捕获状态测试。结果表明:该方法检测效果好、识别率高,实现了模块化纱线捕获状态检测,不仅准确度高、成本低,而且安装方便,可实现生产推广应用。

关键词: 机械式打结机, 纱线检测系统, 图像像素点测量, 相机模组, 嵌入式模块, 圆纬机

Abstract:

Objective With the continuous advancement of intelligent manufacturing process in knitting department, automatic bobbin changing and thread continuation of yarn frame are technical difficulties to be solved urgently. Aiming at the problem that it is impossible to detect the capture state of head yarn and tail yarn when using mechanical knotter to complete yarn joint on yarn frame, which leads to the inability to realize intelligent manufacturing in the knitting workshop, this paper proposes a detection method based on image pixel point measurement.

Method Based on the working principle of mechanical knotting machine, a yarn detection and recognition mechanism which integrates the installation box, camera module and light source was proposed. The mechanism was fixed on the transparent tube between the fan and the suction nozzle. Through the small embedded module, images were collected and processed including pixel counting and signals output in real time. The developed technique facilitated the low-cost yarn capture state detection on the yarn frame.

Results After the knotter moves to the position near the end line, the image without yarn is collected, and the initial number of white pixels is obtained after processing. 200 Groups of data are randomly selected to obtain the curve (Fig.9). The abscissa is the number of tests, and the ordinate is the number of pixels. The initial value of the number of white pixels varies between 24 592 and 24 651, and the maximum variation is only 59. After getting the initial value of the number of pixels, the system controls to clear it to get the corresponding number of pixels when there is no yarn. Theoretically, the number of pixels after clearing is 0. However, due to a small amount of light leakage in the installation box and the high sensitivity of pixel measurement, there is still a numerical fluctuation. Therefore, 200 groups of data are randomly selected to obtain the curve (Fig.10). The number of pixels without yarn after zeroing varies from 0 to 55. Then the head line and tail line absorption experiments were carried out at 5 different positions. After the head line is captured, the number of pixels changes significantly, and is far greater than its maximum fluctuation value of 55. At the same time, the curve fluctuation amplitude is close to that in Figs.9 and 10, which proves that the head line capture state can be recognized by measuring image pixels. In addition, the position has a great impact on the number of pixels, with a range of 204-512. After the two yarns are captured successfully, the change trend of the number of pixels obtained is basically consistent with that of a single yarn, and the number of pixels corresponding to positions 2 to 5 changes significantly more than that of a single yarn, so the capture status of the head thread and tail thread can be detected and recognized normally. The number of pixel points corresponding to position 1 is less than or close to positions 3 to 5 (Fig.11), but there is still a significant difference compared with the number of pixel points of single yarn position 1 and two yarn position 1.

Conclusion In this paper, taking the automatic bobbin change and thread continuation of the circular weft frame as an example, a yarn absorption detection algorithm based on image pixels is proposed according to the working principle of the mechanical knotting machine, and a special installation box and embedded module for yarn detection are designed, which achieves the online real-time recognition function of the bobbin head yarn and tail yarn absorption status before knotting. At the same time, through the experimental test and demonstration application of single and multiple absorption of common yarns with different colors, it is verified that this method has the advantages of high detection sensitivity, small size, low cost, etc. In addition, the detection mechanism and method are also applicable to wire break detection and other fields, so it has good promotion and application value. However, in-depth research on yarn contour, broken thread detection, yarn specification identification and the impact of vibration on the identification effect will be necessary for future work to further improve its applicability and stability.

Key words: mechanical knotter, yarn detection system, image pixel measurement, camera module, embedded module, circular knitting machine

中图分类号: 

  • TP103.7

图1

打结机工作仿真示意图"

图2

纱线吸取前后对照"

图3

图像处理识别流程"

图4

打结机头线、尾线捕获检测流程"

图5

纱线检测系统实物图"

图6

安装盒结构示意图"

图7

小型嵌入式图像处理模块组成结构框图"

图8

纱线检测模块安装效果图"

图9

初始像素点个数"

图10

无纱线对应的像素点个数"

图11

单根纱线对应的像素点个数"

图12

2根纱线对应的像素点个数"

[1] 宋明峰. 基于机器视觉的筒纱缺陷在线检测系统研究[D]. 武汉: 武汉理工大学, 2019:1-2.
SONG Mingfeng. Research on online detection system of cheese yarn defects based on machine vision[D]. Wuhan: Wuhan University of Technology, 2019: 1-2.
[2] 胡旭东, 沈春娅, 彭来湖, 等. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-176.
HU Xudong, SHEN Chunya, PENG Laihu, et al. Intelligent manufacturing and standard about interoperability verification of knitting machine[J]. Journal of Textile Research, 2017, 38(10): 172-176.
[3] 卢茂忠, 吴载阳. 一种针织圆机用编织机: 201811293707.0 [P]. 2018-2-01.
LU Maozhong, WU Zaiyang. The utility model relates to a knitting machine for circular knitting machine: 201811293707.0 [P]. 2018-2-01.
[4] 邹鲲, 佘娟, 白延星. 智能纱架多机械手换纱系统设计[J]. 机床与液压, 2015, 43(3): 60-63.
ZOU Kun, SHE Juan, BAI Yanxing. Design of replacing yarn system of intelligent creel multi-robot[J]. Machine Tool & Hydraulics, 2015, 43(3): 60-63.
[5] 佘娟. 智能纱架的控制系统设计[D]. 上海: 东华大学, 2014:18-22.
SHE Juan. Design on control system of the intelligent creel robot[D]. Shanghai: Donghua University, 2014:18-22.
[6] 顾颖佳. 智能纱架机械手系统研制[D]. 上海: 东华大学, 2013:8-12.
GU Yingjia. The design of the system of the intelligent creel robot[D]. Shanghai: Donghua University, 2013:8-12.
[7] 张洪, 魏毅, 陈瑞, 等. 整经机筒子架自动换筒机器人系统研发[J]. 上海纺织科技, 2020, 48(6): 10-13, 16.
ZHANG Hong, WEI Yi, CHEN Rui, et al. Research and development of automatic barrel changing robot system for warping machine's barrel frame[J]. Shanghai Textile Science & Technology, 2020, 48(6): 10-13, 16.
[8] 梅顺齐, 胡贵攀, 王建伟, 等. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171.
MEI Shunqi, HU Guipan, WANG Jianwei, et al. Analysis of some key technology basis for intelligent textile manufacturing and its equipment[J]. Journal of Textile Research, 2017, 38(10): 166-171.
[9] 胡旭东, 沈春娅. 针织行业的智能制造及其实践[J]. 针织工业, 2019(8): 1-6.
HU Xudong, SHEN Chunya. Intelligent manufacturing and practice in knitting industry[J]. Knitting Industries, 2019(8): 1-6.
[10] 廖能解, 马平, 李健洪, 等. 上下料桁架机器人仿真研究[J]. 机床与液压, 2019, 47(21): 9-14, 33.
LIAO Nengjie, MA Ping, LI Jianhong, et al. Simulation study on loading and unloading material truss robot[J]. Machine Tool & Hydraulics, 2019, 47(21): 9-14, 33.
[11] 吴剑峰, 方千山. 基于视频断线检测系统的设计与实现[J]. 微型机与应用, 2015, 34(13): 80-83.
WU Jianfeng, FANG Qianshan. The design and implementation of spinning break detection system based on video[J]. Microcomputer and application, 2015, 34(13): 80-83.
[12] 景军锋, 郭根. 基于机器视觉的丝饼毛羽检测[J]. 纺织学报, 2019, 40(1): 147-152.
JING Junfeng, GUO Gen. Yarn packages hairiness detection based on machine vision[J]. Journal of Textile Research, 2019, 40(1): 147-152.
doi: 10.1177/004051757004000208
[13] 王鑫. 基于嵌入式系统的图像处理技术研究[D]. 北京: 中国科学院大学, 2015: 1-2.
WANG Xin. The research of image processing technology based on embedded system[D]. Beijing: University of Chinese Academy of Sciences, 2015: 1-2.
[14] 焦再强. 基于Zynq-7000的嵌入式数字图像处理系统设计与实现[D]. 太原: 太原理工大学, 2015: 34-36.
JIAO Zaiqiang. Design and implementation of embedded digital image processing system based on Zynq-7000[D]. Taiyuan: Taiyuan University of Technology, 2015: 34-36.
[1] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
[2] 屠佳佳, 孙磊, 毛慧敏, 戴宁, 朱婉珍, 史伟民. 圆纬机纱架自动换筒技术[J]. 纺织学报, 2022, 43(07): 178-185.
[3] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[4] 彭来湖, 王罗俊, 胡旭东, 吴振辉, 袁嫣红. 磁保持电子选针器及串行总线提花系统设计[J]. 纺织学报, 2019, 40(01): 136-141.
[5] 彭来湖 吴英刚 王罗俊 胡旭东. 针织圆纬机牵拉张力闭环控制技术[J]. 纺织学报, 2018, 39(10): 125-130.
[6] 戴宁 彭来湖 胡旭东 吕明来 未印. 圆纬机主动式动态送纱控制技术[J]. 纺织学报, 2018, 39(09): 153-159.
[7] 彭来湖 陈青松 汝欣 胡旭东 沈春娅. 圆纬机互联互通关键技术[J]. 纺织学报, 2018, 39(05): 119-124.
[8] 彭来湖 吕江东 汝欣 史伟民 向忠. 提花圆纬机花型图案嵌入式显现系统[J]. 纺织学报, 2016, 37(08): 138-142.
[9] 史伟民 郭波锋 彭来湖 袁嫣红. 采用高速串行总线的圆纬机选针驱动器设计[J]. 纺织学报, 2015, 36(05): 110-114.
[10] 吴晓光 孔令学 朱里 武玉琴 黄振 李爽. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10): 128-133.
[11] 许为民;张方华. 从电脑提花圆机的研制看我国针织工业的技术创新[J]. 纺织学报, 2000, 21(04): 60-62.
[12] 周罗庆. 双面纬编圆机上剖绒产品的开发[J]. 纺织学报, 1998, 19(05): 57-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!