纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 228-236.doi: 10.13475/j.fzxb.20220303402

• 综合述评 • 上一篇    

机器学习建立的个体热舒适模型及其在服装领域的应用展望

王中昱1, 苏云1,2, 王云仪1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学), 上海 200051
  • 收稿日期:2022-03-09 修回日期:2022-11-04 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 王云仪(1972—),女,教授,博士。主要研究方向为功能服装设计与性能评价。E-mail:wangyunyi@dhu.edu.cn。
  • 作者简介:王中昱(1995—),女,博士生。主要研究方向为服装舒适性与功能服装。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232022G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Development of personal comfort models based on machine learning and their application prospect in clothing engineering

WANG Zhongyu1, SU Yun1,2, WANG Yunyi1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2022-03-09 Revised:2022-11-04 Published:2023-05-15 Online:2023-06-09

摘要:

为实现单独个体热舒适及需求的实时预测,推动智能服装对衣下微气候进行高效调控,在介绍机器学习算法建立的个体热舒适模型框架的基础上,从样本来源与样本量、输出特征与输出标签、机器学习算法、评估指标4个角度,回顾了模型搭建过程中影响其预测能力的因素,指出该类模型优于传统热舒适模型,且具有用户个性化、输入参数多维化、预测动态化的特点。最后,提出可在个体热舒适模型的基础上配置可穿戴硬件及软件系统,以研发智能调温服装。未来的研究应根据应用环境选择样本数据、提取不同性质的参数构建模型、制定模型性能评估的规范、探索模型在智能调温服装领域的应用。

关键词: 机器学习, 衣下微气候, 热舒适, 预测模型, 智能服装

Abstract:

Significance Human, clothing and external environment form an interactive system. As a barrier between the environment and human body, clothing directly affects the thermal comfort of people. It is indispensable to evaluate the thermal comfort or personal safety. However, individual differences would lead to discrepancy in subjective feelings and efficiency could be impaired if frequent subjective assessment is needed in working process. Therefore, effectively predicting the thermal comfort of individuals and returning timely suggestions to improve the micro-environment between clothing and body would be necessary. Conventional thermal comfort models including steady-state heat transfer models, thermal adaptative models and dynamic thermal physiology models were established based on physical equations or data from general population, without considering individual differences. Therefore, new methods should be introduced to study the personal thermal comfort. Researches have been carried out on the application of machine learning algorithms to establish personal thermal comfort models, predicting individual thermal comfort through data-driven methods. Compared with conventional models, the prediction of the personal thermal comfort models is significantly improved. The models overcome the defects of the conventional models which are complicated and inflexible, predict thermal comfort in real time, and are beneficial to improve of micro thermal environment more efficiently.

Progress The personal thermal comfort models established by machine learning could be regarded as a supervised learning process. Sample source, input features and output labels, machine learning algorithms and evaluation indicators are the main influencing factors encountered during the establishment. Sample source brings about the question of applicability. Models built upon laboratory data may not be fit for field studies, neither are models established with mild environments' data suitable for extreme conditions. The sample size for achieving stable prediction varied from models. Generally, input characteristic parameters included environmental parameters collected from the surrounding environment or meteorological platform, and individual parameters reflecting the state of the human, could be both considered when collecting input features. Subjective evaluation index as output labels depended on research purpose and the evaluation of human thermal comfort should consider at least two subjective indexes, including symmetric and asymmetric ones. When selecting machine learning algorithms, the sample size and applicability of the algorithm also should be taken into account, as well as the cost and interpretability. Evaluating the prediction performance helps to confirm the validity of models especially when conducting multi-index evaluation. Indexes such as accuracy, precision, recall are suitable for the binary-classification conditions, while Kappa coefficient could handle the multi-classification and imbalanced datasets. The models based on machine learning has a broad application prospect in clothing due to its personalization, flexibility and dynamic predictions. Developing intelligent temperature regulating clothing that could predict the thermal comfort of individuals in real time and change the control strategies accordingly has become a research hotspot. Personal thermal comfort models provide a feasible technical path by combining software and wearable hardware systems. Once achieved, the thermal security would be guaranteed and the work efficiency improved.

Conclusion and Prospect Personal thermal comfort models based on machine learning algorithm is a new method to achieve individual thermal comfort prediction, which has the advantages of user personalization, multi-dimensional input parameters and dynamic prediction. At present, some progress has been made in the research of this model, which is summarized as follows. 1) The data of the model usually come from simulated experiment environment or actual working environment, but the prediction model based on the two kinds of data is not universal. Therefore, the reasons and solutions for the differences can be further explored to expand the application scope of the model. 2) Personal thermal comfort is mainly affected by the environment and individual factors. The selection of feature parameters should adopt multi-parameter combination with different properties, and the number of feature parameters should be controlled according to different algorithms. When applied in the field of clothing research, attention should be paid to comprehensively consider the influence of clothing on human thermal regulation. 3) A variety of indicators are involved when evaluating models' prediction performance, and the evaluation objects and applicability of which should be considered. In order to overcome the limitation and incomparability of single index evaluation, future studies might focus on multi-index comprehensive evaluation to evaluate the model's prediction and generalization ability. 4) Personal thermal comfort models established by machine learning algorithm has high application value in the field of intelligent clothing. The modeling technique's improvement could provide key technical support for development of intelligent temperature regulating clothing. Accordingly, the real time thermal comfort requirements of operators would be met, while operational efficiency and thermal safety could be guaranteed.

Key words: machine learning, microclimate under clothing, thermal comfort, prediction model, intelligent clothing

中图分类号: 

  • TS941.16

图1

个体热舒适模型的构建过程"

表1

不同算法预测能力稳定时所需样本量"

作者 算法 所需
样本量
模型
预测结果
Kim等[16] 6种:分类树、高斯过程分类、梯度推进方法、支持向量机、随进森林、正则化逻辑斯蒂回归 64 模型收敛
Liu等[23] 14种:线性判别分析、逻辑斯蒂回归、神经网络、支持向量机、k近邻、朴素贝叶斯、分类和回归树、J48决策树、基于规则的分类器、C5.0、装袋分类和回归树、随机森林、随机森林、随机梯度提升算法 200 准确率
>71%
Shan等[26] 人工神经网络 40 准确率
>80%
Auffenberg等[27] 贝叶斯 10 均方根
误差=1

表2

个体热舒适模型的特征参数研究"

作者 特征参数 主观热
评价标签
预测性能 研究结论
准确率/% AUC Kappa系数/%
Liu等[23] 环境参数(室外温度、风速、太阳辐射、相对湿度),时间 热感觉;
热偏好
68 0.66 18 仅凭环境信息无法从有限数据集中获得令人信服的预测性能,且个体信息、时间作为输入特征的模型预测能力与环境信息、时间相当。
个体参数(手腕温度、运动加速度、心率),时间 71 0.67 18
环境参数(室外温度、风速、太阳辐射、相对湿度、附近温度),个体参数(手腕温度、运动加速度、心率),时间 77 0.78 43 综合考虑环境参数与个体参数的模型预测能力显著提升;特征参数的选择并不是越多越好,输入特征过多可能不利于模型预测性能的提升。
全部参数(室外温度、风速、太阳辐射、相对湿度、附近温度、手腕温度、脚踝温度、运动加速度、心率、时间) 76 0.80 35
Shan等[26] 手腕、颈部及手腕上方2mm处的皮肤温度(T2mm) 热感觉 89.2 3处皮肤温度所建模型的准确率等同甚至优于使用平均皮肤温度的个体热舒适模型;T2mm单独的腕部皮肤温度可通过结合皮肤温度和环境温度的信息更全面地表达身体的热感觉。
平均皮肤温度 78.5
Wu等[37] 历史环境温度,环境温度/心率/头部皮肤温度/手部皮肤温度/小臂皮肤温度/小腿皮肤温度/大腿皮肤温度 热舒适;
热偏好
72~82 额外输入历史环境温度,热舒适预测准确率提升15.5%,热偏好提升29.8%;小腿皮肤温度与手部皮肤温度可用于预测热舒适,头部皮肤温度与手部皮肤温度可能更适合预测热偏好。
Katic等[40] 平均皮肤温度,手部皮肤温度,个性化加热偏好,时间 热感觉;
热舒适
86~87 平均皮肤温度、手部皮肤温度和个性化加热系统的设置,可作为模型的输入特征。
[1] 储向阳, 于航, 焦瑜, 等. 与生理参数相关的热舒适实验研究综述[J]. 建筑热能通风空调, 2018, 37(12): 60-64.
CHU Xiangyang, YU Hang, JIAO Yu, et al. A review of experimental study on physiological parameters in the field of thermal comfort[J]. Building Energy & Environment, 2018, 37(12): 60-64.
[2] 陈胜. 用户热舒适度智能学习算法及在暖通系统中的应用[D]. 上海: 上海交通大学, 2016: 1-10.
CHEN Sheng. Intelligent algorithms for learning occupants' thermal comfort and their application on HVAC system[D]. Shanghai: Shanghai Jiao Tong University, 2016: 1-10.
[3] 张渭源. 服装舒适性与功能[M]. 北京: 中国纺织出版社, 2011: 1-13.
ZHANG Weiyuan. Clothing comfort and function[M]. Beijing: China Textile & Apparel Press, 2011: 1-13.
[4] GAGGE A P, STOLWIJK J A J, HARDY J D. Comfort and thermal sensations and associated physiological responses at various ambient temperatures[J]. Environmental Research, 1967, 2(3): 209-229.
doi: 10.1016/0013-9351(69)90037-1
[5] GAGGE A P, FORBELETS A, BERGLUND L. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92: 709-731.
[6] FANGER P O. Thermal comfort: analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press, 1970: 225-240.
[7] FANGER P O. Calculation of thermal comfort: Introduction of a basic comfort equation[J]. ASHRAE Transactions, 1967, 73(2): 76-82.
[8] BROWN R D, GILLESPIE T J. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model[J]. International Journal of Biometeorology, 1986, 30(1): 43-52.
pmid: 3699925
[9] NICOL J F, HUMPHREYS M A. Thermal comfort as part of a self-regulating system[J]. Building Research and Practice, 1973, 6 (3): 191-197.
[10] DE DEAR R, BRAGER G, COOPER D. Developing an adaptive model of thermal comfort and preference[J]. ASHRAE Transactions, 1998, 104(1): 145-167.
[11] YAO R M, LI B Z, LIU J. A theoretical adaptive model of thermal comfort: adaptive predicted mean vote (aPMV)[J]. Building and Environment, 2009, 44(10): 2089-2096.
doi: 10.1016/j.buildenv.2009.02.014
[12] KIM J T, LIM J H, CHO S H, et al. Development of the adaptive PMV model for improving prediction performances[J]. Energy and Buildings, 2015, 98: 100-105.
doi: 10.1016/j.enbuild.2014.08.051
[13] ZANG M, XING Z, TAN Y. IoT-based personal thermal comfort control for livable environment[J]. International Journal of Distributed Sensor Networks, 2019, 15(7): 363-373.
[14] FIALA D, LOMAS K, STOHRER M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system[J]. Journal of Applied Physiology, 1999, 87(5): 1957-1972.
doi: 10.1152/jappl.1999.87.5.1957 pmid: 10562642
[15] BRODE P, KRUGER E, ROSSI F, et al. Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI: a case study in southern Brazil[J]. International Journal of Biometeorology, 2011, 56(3): 471-480.
doi: 10.1007/s00484-011-0452-3
[16] KIM J, ZHOU Y X, SCHIAVONS S, et al. Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning[J]. Building and Environment, 2018, 129: 96-106.
doi: 10.1016/j.buildenv.2017.12.011
[17] ZHANG H, ARENS E, ZHAI Y C. A review of the corrective power of personal comfort systems in non-neutral ambient environments[J]. Building and Environment, 2015, 91: 15-41.
doi: 10.1016/j.buildenv.2015.03.013
[18] FARHAN A A, PATTIPATI K, WANG B, et al. Predicting individual thermal comfort using machine learning algorithms[C]// ÅKESSON K. 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg. Sweden: IEEE, 2015: 708-713.
[19] JIANG L, YAO R M. Modelling personal thermal sensations using C-support vector classification (C-SVC) algorithm[J]. Building and Environment, 2016, 99: 98-106.
doi: 10.1016/j.buildenv.2016.01.022
[20] WU Z B, LI N P, PENG J Q, et al. Using an ensemble machine learning methodology-bagging to predict occupants' thermal comfort in buildings[J]. Energy and Buildings, 2018, 173: 117-127.
doi: 10.1016/j.enbuild.2018.05.031
[21] JAVED M, LI N, LI S Y. Personalized thermal comfort modeling based on support vector classification[C]// LIU T, ZHAO Q C. 2017 36th Chinese Control Conference (CCC). Dalian: IEEE, 2017: 10446-10451.
[22] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 1-22.
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 1-22.
[23] LIU S C, SCHIAVON S, DAS H P, et al. Personal thermal comfort models with wearable sensors[J]. Building and Environment, 2019, 162: 1-17.
[24] LIǑINA V F, CHEUNG T, ZHANG H, et al. Development of the ASHRAE global thermal comfort database II[J]. Building and Environment, 2018, 142: 502-512.
doi: 10.1016/j.buildenv.2018.06.022
[25] DAI C Z, ZHANG H, ARENS E, et al. Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions[J]. Building and Environment, 2017, 114: 1-10.
doi: 10.1016/j.buildenv.2016.12.005
[26] SHAN C, HU J, WU J, et al. Towards non-intrusive and high accuracy prediction of personal thermal comfort using a few sensitive physiological parameters[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2019.109594.
doi: 10.1016/j.enbuild.2019.109594
[27] AUFFENBERG F, STEIN S, A R. A personalised thermal comfort model using a bayesian network[C]// YANG Q, WOOLDRIDGE M. Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI 2015). Buenos Aires: AAAI, 2015. 2547-2553.
[28] CULC A, NIZETIC S, SOLIC P, et al. Smart monitoring technologies for personal thermal comfort: a review[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.127685.
doi: 10.1016/j.jclepro.2021.127685
[29] SUNG W T, HSIAO S J, SHIH J A. Construction of indoor thermal comfort environmental monitoring system based on the IoT architecture[J]. Journal of Sensors, 2019, 2019: 1-16.
[30] ALSALEEM F, TESFAY M K, RAFAIE M, et al. An IoT framework for modeling and controlling thermal comfort in buildings[J]. Frontiers in Built Environment, 2020, 6: 87.
doi: 10.3389/fbuil.2020.00087
[31] YU J, CAO G, CUI W, et al. People who live in a cold climate: thermal adaptation differences based on availability of heating[J]. Indoor Air, 2013, 23(4): 303-310.
doi: 10.1111/ina.12025 pmid: 23278325
[32] NING H R, WANG Z J, ZHANG X X, et al. Adaptive thermal comfort in university dormitories in the severe cold area of China[J]. Building and Environment, 2016, 99: 161-169.
doi: 10.1016/j.buildenv.2016.01.003
[33] UMEMIYA N. Seasonal variations of physiological characteristics and thermal sensation under identical thermal conditions[J]. Journal of Physiological Anthropology, 2006, 25(1): 29-39.
pmid: 16617206
[34] LEE J B, KIM T W, MIN Y K, et al. Seasonal acclimatization in summer versus winter to changes in the sweating response during passive heating in Korean young adult men[J]. The Korean Journal of Physiology & Pharmacology, 2015, 19(1): 9-14.
[35] JI W J, CAO B, GENG Y, et al. A study on the influences of immediate thermal history on current thermal sensation[J]. Energy and Buildings, 2019, 198: 364-376.
doi: 10.1016/j.enbuild.2019.05.065
[36] JI W J, CAO B, LUO M H, et al. Influence of short-term thermal experience on thermal comfort evaluations: a climate chamber experiment[J]. Building and Environment, 2017, 114: 246-256.
doi: 10.1016/j.buildenv.2016.12.021
[37] WU Y X, LIU H, LI B Z, et al. Individual thermal comfort prediction using classification tree model based on physiological parameters and thermal history in winter[J]. Building Simulation, 2021, 14(6): 1651-1665.
doi: 10.1007/s12273-020-0750-y
[38] COSMA A C, SIMHA R. Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera[J]. Building and Environment, 2018, 143: 36-47.
doi: 10.1016/j.buildenv.2018.06.052
[39] DJOKO F, WARUWU M M, WIJAYANTO T, et al. Feasibility study to detect occupant thermal sensation using a low-cost thermal camera for indoor environments in Indonesia[J]. Building Services Engineering Research and Technology, 2021, 42(4): 1-16.
[40] KATIC K, LI R L, ZEILER W. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior[J]. Applied Ergonomics, 2020. DOI: 10.1016/j.apergo.2020.103078.
doi: 10.1016/j.apergo.2020.103078
[41] LEE J, HAM Y. Physiological sensing-driven personal thermal comfort modelling in consideration of human activity variations[J]. Building Research & Information, 2020, 49(5): 512-524.
[42] ZHU H, WANG H, LIU Z, et al. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environ-ments[J]. Science of the Total Environment, 2018, 616: 1124-1133.
[43] GWOSDOW A R, BERGLUND L G. Clothing distribution influences thermal responses of men in cool environments[J]. Journal of Thermal Biology, 1987, 12(2): 91-95.
doi: 10.1016/0306-4565(87)90044-1
[44] HANADA K, MIHIRA K, KAMISASA H. The effect of unevenly distributed thermal stimuli on the sensation of warmth and coolness[J]. Applied Ergonomics, 1982, 13(1): 49-53.
pmid: 15676426
[45] WANG Z H, CAO B, JI W J, et al. Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2020.109796.
doi: 10.1016/j.enbuild.2020.109796
[46] WU M, LI H, QI H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments[J]. Indoor Air, 2020, 30(3): 534-543.
doi: 10.1111/ina.12644 pmid: 31943395
[47] JUNG W, JAZIZADEH F, DILLER T E. Heat flux sensing for machine-learning-based personal thermal comfort modeling[J]. Sensors (Basel), 2019, 19(17): 3691.
doi: 10.3390/s19173691
[48] HUMPHEREYS M, NICOL F. Understanding the adaptive approach to thermal comfort[J]. ASHRAE Transactions, 1998, 104(1): 991-1004.
[49] WANG Z, ZHANG H, HE Y D, et al. Revisiting individual and group differences in thermal comfort based on ASHRAE database[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2020.110017.
doi: 10.1016/j.enbuild.2020.110017
[50] MA G, LIU Y, SHANG S. A Building Information Model (BIM) and artificial neural network (ANN) based system for personal thermal comfort evaluation and energy efficient design of interior space[J]. Sustainability, 2019. DOI: 10.3390/su11184972.
doi: 10.3390/su11184972
[51] WANG Z, WANG J Y, HE Y E, et al. Dimension analysis of subjective thermal comfort metrics based on ASHRAE global thermal comfort database using machine learning[J]. Journal of Building Engineering, 2020. DOI: 10.1016/j.jobe.2019.101120.
doi: 10.1016/j.jobe.2019.101120
[52] 韩尔冬, 李百战, 杜晨秋, 等. 基于朴素贝叶斯增量学习算法的个体热舒适预测模型[J]. 暖通空调, 2021, 51(11): 13-21.
HAN Erdong, LI Baizhan, DU Chenqiu, et al. Personal thermal comfort prediction model based on naive Bayesian incremental learning algorithms[J]. Heating Ventilating & Air Conditioning, 2021, 51(11): 13-21.
[53] LEE S, BILIONIS I, KARAVA P, et al. A Bayesian approach for learning and predicting personal thermal preference[C]// GROLL E A, TZEMPELIKOS T. 4th International High Performance Buildings at Purdue 2016. West Lafayette: Purdue University, 2016: 3661.
[54] KIM J, SCHIAVON S, BRAGER G. Personal comfort models-a new paradigm in thermal comfort for occupant-centric environmental control[J]. Building and Environment, 2018, 132: 114-124.
doi: 10.1016/j.buildenv.2018.01.023
[55] NIKOLINA P, SANDRO N, VLASTA Z. The current state of research on thermal comfort prediction models[C]// PERKOVIC T, MILANOCIC Z, VUKOIEVIC K, et al. 3rd International Conference on Smart and Sustainable Technologies (SpliTech). Split: IEEE, 2018: 1-6.
[56] ROGALE S F, ROGALE D, NIKOLIC G. Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties[J]. Textile Research Journal, 2017, 88(19): 2214-2233.
doi: 10.1177/0040517517718190
[57] CUI Y, LIU X. Soft-logic: design and thermal-comfort evaluation of smart thermoregulatory fabric with pneumatic actuators[J]. The Journal of The Textile Institute, 2020, 112(12): 1913-1924.
doi: 10.1080/00405000.2020.1848121
[58] ROGALE S F, DRAGCEVIC Z, ROGALE D, et al. Technical systems in intelligent clothing with active thermal protection[J]. International Journal of Clothing Science and Technology, 2007, 19(3): 222-233.
doi: 10.1108/09556220710741696
[59] 吴雨曦. 面向高龄女性的智能调温加热服开发与舒适性研究[D]. 上海: 东华大学, 2020: 62-88.
WU Yuxi. Study of smart temperature-regulating heating clothing and the thermal comfort for the elderly women[D]. Shanghai: Donghua University, 2020:62-88.
[60] 王宏付, 张海棠, 柯莹. 智能防寒服装研究进展[J]. 服装学报, 2021, 6(1): 29-35.
WANG Hongfu, ZHANG Haitang, KE Ying. Research progress on intelligent cold protective clothing[J]. Journal of Clothing Research, 2021, 6(1): 29-35.
[61] WANG S X, LI Y, HU J Y, et al. Effect of phase-change material on energy consumption of intelligent thermal-protective clothing[J]. Polymer Testing, 2006, 25(5): 580-587.
doi: 10.1016/j.polymertesting.2006.01.018
[62] 叶冬茂. 智能相变调温纺织品在运动服上的应用研究[J]. 产业用纺织品, 2013, 285: 30-34.
YE Dongmao. Research on the application of intelligent phase change tempering textile in sportswear[J]. Technical Textiles, 2013, 285: 30-34.
[63] 王宗宁, 高健, 孙宝剑, 等. 智能温控身份识别消防服的研究及应用[J]. 中国个体防护装备, 2020(6): 14-18.
WANG Zongning, GAO Jian, SUN Baojian, et al. Research and application of intelligent temperature controlled and identity recognized fire fighting suit[J]. China Personal Protective Equipment, 2020(6): 14-18.
[64] 田苗, 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014, 35(2): 109-115.
TIAN Miao, LI Jun. Design mode and development tendency of smart clothing[J]. Journal of Textile Research, 2014, 35(2): 109-115.
[65] SUNG W T, HSIAO S J. The application of thermal comfort control based on smart house system of IoT[J]. Measurement, 2020, 149: 106997.
doi: 10.1016/j.measurement.2019.106997
[66] 金鹏. 基于嵌入式系统的智能服装设计研究[D]. 无锡: 江南大学, 2021: 5-8.
JIN Peng. Research on intelligent apparel product design based on embedded system[D]. Wuxi: Jiangnan University, 2021: 5-8.
[1] 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194.
[2] 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54.
[3] 郑晴, 严芳英, 柯莹, 王鸿博. 基于睡袋温标模型的被子舒适温度测定与可行性验证[J]. 纺织学报, 2023, 44(02): 151-158.
[4] 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111.
[5] 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208.
[6] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[7] 江舒, 李俊. 婴儿被服热舒适性研究进展[J]. 纺织学报, 2022, 43(08): 189-196.
[8] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[9] 黄锐, 肖爱民. 基于温湿度传感器的特护失禁内裤的研发[J]. 纺织学报, 2022, 43(07): 141-148.
[10] 郑雯洁, 张爱丹. 基于图像光影重构的缎纹影光织物明度预测方法[J]. 纺织学报, 2022, 43(05): 97-103.
[11] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[12] 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
[13] 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155.
[14] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[15] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!