纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 228-236.doi: 10.13475/j.fzxb.20220303402
• 综合述评 • 上一篇
WANG Zhongyu1, SU Yun1,2, WANG Yunyi1,2()
摘要:
为实现单独个体热舒适及需求的实时预测,推动智能服装对衣下微气候进行高效调控,在介绍机器学习算法建立的个体热舒适模型框架的基础上,从样本来源与样本量、输出特征与输出标签、机器学习算法、评估指标4个角度,回顾了模型搭建过程中影响其预测能力的因素,指出该类模型优于传统热舒适模型,且具有用户个性化、输入参数多维化、预测动态化的特点。最后,提出可在个体热舒适模型的基础上配置可穿戴硬件及软件系统,以研发智能调温服装。未来的研究应根据应用环境选择样本数据、提取不同性质的参数构建模型、制定模型性能评估的规范、探索模型在智能调温服装领域的应用。
中图分类号:
[1] | 储向阳, 于航, 焦瑜, 等. 与生理参数相关的热舒适实验研究综述[J]. 建筑热能通风空调, 2018, 37(12): 60-64. |
CHU Xiangyang, YU Hang, JIAO Yu, et al. A review of experimental study on physiological parameters in the field of thermal comfort[J]. Building Energy & Environment, 2018, 37(12): 60-64. | |
[2] | 陈胜. 用户热舒适度智能学习算法及在暖通系统中的应用[D]. 上海: 上海交通大学, 2016: 1-10. |
CHEN Sheng. Intelligent algorithms for learning occupants' thermal comfort and their application on HVAC system[D]. Shanghai: Shanghai Jiao Tong University, 2016: 1-10. | |
[3] | 张渭源. 服装舒适性与功能[M]. 北京: 中国纺织出版社, 2011: 1-13. |
ZHANG Weiyuan. Clothing comfort and function[M]. Beijing: China Textile & Apparel Press, 2011: 1-13. | |
[4] |
GAGGE A P, STOLWIJK J A J, HARDY J D. Comfort and thermal sensations and associated physiological responses at various ambient temperatures[J]. Environmental Research, 1967, 2(3): 209-229.
doi: 10.1016/0013-9351(69)90037-1 |
[5] | GAGGE A P, FORBELETS A, BERGLUND L. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92: 709-731. |
[6] | FANGER P O. Thermal comfort: analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press, 1970: 225-240. |
[7] | FANGER P O. Calculation of thermal comfort: Introduction of a basic comfort equation[J]. ASHRAE Transactions, 1967, 73(2): 76-82. |
[8] |
BROWN R D, GILLESPIE T J. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model[J]. International Journal of Biometeorology, 1986, 30(1): 43-52.
pmid: 3699925 |
[9] | NICOL J F, HUMPHREYS M A. Thermal comfort as part of a self-regulating system[J]. Building Research and Practice, 1973, 6 (3): 191-197. |
[10] | DE DEAR R, BRAGER G, COOPER D. Developing an adaptive model of thermal comfort and preference[J]. ASHRAE Transactions, 1998, 104(1): 145-167. |
[11] |
YAO R M, LI B Z, LIU J. A theoretical adaptive model of thermal comfort: adaptive predicted mean vote (aPMV)[J]. Building and Environment, 2009, 44(10): 2089-2096.
doi: 10.1016/j.buildenv.2009.02.014 |
[12] |
KIM J T, LIM J H, CHO S H, et al. Development of the adaptive PMV model for improving prediction performances[J]. Energy and Buildings, 2015, 98: 100-105.
doi: 10.1016/j.enbuild.2014.08.051 |
[13] | ZANG M, XING Z, TAN Y. IoT-based personal thermal comfort control for livable environment[J]. International Journal of Distributed Sensor Networks, 2019, 15(7): 363-373. |
[14] |
FIALA D, LOMAS K, STOHRER M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system[J]. Journal of Applied Physiology, 1999, 87(5): 1957-1972.
doi: 10.1152/jappl.1999.87.5.1957 pmid: 10562642 |
[15] |
BRODE P, KRUGER E, ROSSI F, et al. Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI: a case study in southern Brazil[J]. International Journal of Biometeorology, 2011, 56(3): 471-480.
doi: 10.1007/s00484-011-0452-3 |
[16] |
KIM J, ZHOU Y X, SCHIAVONS S, et al. Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning[J]. Building and Environment, 2018, 129: 96-106.
doi: 10.1016/j.buildenv.2017.12.011 |
[17] |
ZHANG H, ARENS E, ZHAI Y C. A review of the corrective power of personal comfort systems in non-neutral ambient environments[J]. Building and Environment, 2015, 91: 15-41.
doi: 10.1016/j.buildenv.2015.03.013 |
[18] | FARHAN A A, PATTIPATI K, WANG B, et al. Predicting individual thermal comfort using machine learning algorithms[C]// ÅKESSON K. 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg. Sweden: IEEE, 2015: 708-713. |
[19] |
JIANG L, YAO R M. Modelling personal thermal sensations using C-support vector classification (C-SVC) algorithm[J]. Building and Environment, 2016, 99: 98-106.
doi: 10.1016/j.buildenv.2016.01.022 |
[20] |
WU Z B, LI N P, PENG J Q, et al. Using an ensemble machine learning methodology-bagging to predict occupants' thermal comfort in buildings[J]. Energy and Buildings, 2018, 173: 117-127.
doi: 10.1016/j.enbuild.2018.05.031 |
[21] | JAVED M, LI N, LI S Y. Personalized thermal comfort modeling based on support vector classification[C]// LIU T, ZHAO Q C. 2017 36th Chinese Control Conference (CCC). Dalian: IEEE, 2017: 10446-10451. |
[22] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 1-22. |
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 1-22. | |
[23] | LIU S C, SCHIAVON S, DAS H P, et al. Personal thermal comfort models with wearable sensors[J]. Building and Environment, 2019, 162: 1-17. |
[24] |
LIǑINA V F, CHEUNG T, ZHANG H, et al. Development of the ASHRAE global thermal comfort database II[J]. Building and Environment, 2018, 142: 502-512.
doi: 10.1016/j.buildenv.2018.06.022 |
[25] |
DAI C Z, ZHANG H, ARENS E, et al. Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions[J]. Building and Environment, 2017, 114: 1-10.
doi: 10.1016/j.buildenv.2016.12.005 |
[26] |
SHAN C, HU J, WU J, et al. Towards non-intrusive and high accuracy prediction of personal thermal comfort using a few sensitive physiological parameters[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2019.109594.
doi: 10.1016/j.enbuild.2019.109594 |
[27] | AUFFENBERG F, STEIN S, A R. A personalised thermal comfort model using a bayesian network[C]// YANG Q, WOOLDRIDGE M. Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI 2015). Buenos Aires: AAAI, 2015. 2547-2553. |
[28] |
CULC A, NIZETIC S, SOLIC P, et al. Smart monitoring technologies for personal thermal comfort: a review[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.127685.
doi: 10.1016/j.jclepro.2021.127685 |
[29] | SUNG W T, HSIAO S J, SHIH J A. Construction of indoor thermal comfort environmental monitoring system based on the IoT architecture[J]. Journal of Sensors, 2019, 2019: 1-16. |
[30] |
ALSALEEM F, TESFAY M K, RAFAIE M, et al. An IoT framework for modeling and controlling thermal comfort in buildings[J]. Frontiers in Built Environment, 2020, 6: 87.
doi: 10.3389/fbuil.2020.00087 |
[31] |
YU J, CAO G, CUI W, et al. People who live in a cold climate: thermal adaptation differences based on availability of heating[J]. Indoor Air, 2013, 23(4): 303-310.
doi: 10.1111/ina.12025 pmid: 23278325 |
[32] |
NING H R, WANG Z J, ZHANG X X, et al. Adaptive thermal comfort in university dormitories in the severe cold area of China[J]. Building and Environment, 2016, 99: 161-169.
doi: 10.1016/j.buildenv.2016.01.003 |
[33] |
UMEMIYA N. Seasonal variations of physiological characteristics and thermal sensation under identical thermal conditions[J]. Journal of Physiological Anthropology, 2006, 25(1): 29-39.
pmid: 16617206 |
[34] | LEE J B, KIM T W, MIN Y K, et al. Seasonal acclimatization in summer versus winter to changes in the sweating response during passive heating in Korean young adult men[J]. The Korean Journal of Physiology & Pharmacology, 2015, 19(1): 9-14. |
[35] |
JI W J, CAO B, GENG Y, et al. A study on the influences of immediate thermal history on current thermal sensation[J]. Energy and Buildings, 2019, 198: 364-376.
doi: 10.1016/j.enbuild.2019.05.065 |
[36] |
JI W J, CAO B, LUO M H, et al. Influence of short-term thermal experience on thermal comfort evaluations: a climate chamber experiment[J]. Building and Environment, 2017, 114: 246-256.
doi: 10.1016/j.buildenv.2016.12.021 |
[37] |
WU Y X, LIU H, LI B Z, et al. Individual thermal comfort prediction using classification tree model based on physiological parameters and thermal history in winter[J]. Building Simulation, 2021, 14(6): 1651-1665.
doi: 10.1007/s12273-020-0750-y |
[38] |
COSMA A C, SIMHA R. Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera[J]. Building and Environment, 2018, 143: 36-47.
doi: 10.1016/j.buildenv.2018.06.052 |
[39] | DJOKO F, WARUWU M M, WIJAYANTO T, et al. Feasibility study to detect occupant thermal sensation using a low-cost thermal camera for indoor environments in Indonesia[J]. Building Services Engineering Research and Technology, 2021, 42(4): 1-16. |
[40] |
KATIC K, LI R L, ZEILER W. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior[J]. Applied Ergonomics, 2020. DOI: 10.1016/j.apergo.2020.103078.
doi: 10.1016/j.apergo.2020.103078 |
[41] | LEE J, HAM Y. Physiological sensing-driven personal thermal comfort modelling in consideration of human activity variations[J]. Building Research & Information, 2020, 49(5): 512-524. |
[42] | ZHU H, WANG H, LIU Z, et al. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environ-ments[J]. Science of the Total Environment, 2018, 616: 1124-1133. |
[43] |
GWOSDOW A R, BERGLUND L G. Clothing distribution influences thermal responses of men in cool environments[J]. Journal of Thermal Biology, 1987, 12(2): 91-95.
doi: 10.1016/0306-4565(87)90044-1 |
[44] |
HANADA K, MIHIRA K, KAMISASA H. The effect of unevenly distributed thermal stimuli on the sensation of warmth and coolness[J]. Applied Ergonomics, 1982, 13(1): 49-53.
pmid: 15676426 |
[45] |
WANG Z H, CAO B, JI W J, et al. Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2020.109796.
doi: 10.1016/j.enbuild.2020.109796 |
[46] |
WU M, LI H, QI H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments[J]. Indoor Air, 2020, 30(3): 534-543.
doi: 10.1111/ina.12644 pmid: 31943395 |
[47] |
JUNG W, JAZIZADEH F, DILLER T E. Heat flux sensing for machine-learning-based personal thermal comfort modeling[J]. Sensors (Basel), 2019, 19(17): 3691.
doi: 10.3390/s19173691 |
[48] | HUMPHEREYS M, NICOL F. Understanding the adaptive approach to thermal comfort[J]. ASHRAE Transactions, 1998, 104(1): 991-1004. |
[49] |
WANG Z, ZHANG H, HE Y D, et al. Revisiting individual and group differences in thermal comfort based on ASHRAE database[J]. Energy and Buildings, 2020. DOI: 10.1016/j.enbuild.2020.110017.
doi: 10.1016/j.enbuild.2020.110017 |
[50] |
MA G, LIU Y, SHANG S. A Building Information Model (BIM) and artificial neural network (ANN) based system for personal thermal comfort evaluation and energy efficient design of interior space[J]. Sustainability, 2019. DOI: 10.3390/su11184972.
doi: 10.3390/su11184972 |
[51] |
WANG Z, WANG J Y, HE Y E, et al. Dimension analysis of subjective thermal comfort metrics based on ASHRAE global thermal comfort database using machine learning[J]. Journal of Building Engineering, 2020. DOI: 10.1016/j.jobe.2019.101120.
doi: 10.1016/j.jobe.2019.101120 |
[52] | 韩尔冬, 李百战, 杜晨秋, 等. 基于朴素贝叶斯增量学习算法的个体热舒适预测模型[J]. 暖通空调, 2021, 51(11): 13-21. |
HAN Erdong, LI Baizhan, DU Chenqiu, et al. Personal thermal comfort prediction model based on naive Bayesian incremental learning algorithms[J]. Heating Ventilating & Air Conditioning, 2021, 51(11): 13-21. | |
[53] | LEE S, BILIONIS I, KARAVA P, et al. A Bayesian approach for learning and predicting personal thermal preference[C]// GROLL E A, TZEMPELIKOS T. 4th International High Performance Buildings at Purdue 2016. West Lafayette: Purdue University, 2016: 3661. |
[54] |
KIM J, SCHIAVON S, BRAGER G. Personal comfort models-a new paradigm in thermal comfort for occupant-centric environmental control[J]. Building and Environment, 2018, 132: 114-124.
doi: 10.1016/j.buildenv.2018.01.023 |
[55] | NIKOLINA P, SANDRO N, VLASTA Z. The current state of research on thermal comfort prediction models[C]// PERKOVIC T, MILANOCIC Z, VUKOIEVIC K, et al. 3rd International Conference on Smart and Sustainable Technologies (SpliTech). Split: IEEE, 2018: 1-6. |
[56] |
ROGALE S F, ROGALE D, NIKOLIC G. Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties[J]. Textile Research Journal, 2017, 88(19): 2214-2233.
doi: 10.1177/0040517517718190 |
[57] |
CUI Y, LIU X. Soft-logic: design and thermal-comfort evaluation of smart thermoregulatory fabric with pneumatic actuators[J]. The Journal of The Textile Institute, 2020, 112(12): 1913-1924.
doi: 10.1080/00405000.2020.1848121 |
[58] |
ROGALE S F, DRAGCEVIC Z, ROGALE D, et al. Technical systems in intelligent clothing with active thermal protection[J]. International Journal of Clothing Science and Technology, 2007, 19(3): 222-233.
doi: 10.1108/09556220710741696 |
[59] | 吴雨曦. 面向高龄女性的智能调温加热服开发与舒适性研究[D]. 上海: 东华大学, 2020: 62-88. |
WU Yuxi. Study of smart temperature-regulating heating clothing and the thermal comfort for the elderly women[D]. Shanghai: Donghua University, 2020:62-88. | |
[60] | 王宏付, 张海棠, 柯莹. 智能防寒服装研究进展[J]. 服装学报, 2021, 6(1): 29-35. |
WANG Hongfu, ZHANG Haitang, KE Ying. Research progress on intelligent cold protective clothing[J]. Journal of Clothing Research, 2021, 6(1): 29-35. | |
[61] |
WANG S X, LI Y, HU J Y, et al. Effect of phase-change material on energy consumption of intelligent thermal-protective clothing[J]. Polymer Testing, 2006, 25(5): 580-587.
doi: 10.1016/j.polymertesting.2006.01.018 |
[62] | 叶冬茂. 智能相变调温纺织品在运动服上的应用研究[J]. 产业用纺织品, 2013, 285: 30-34. |
YE Dongmao. Research on the application of intelligent phase change tempering textile in sportswear[J]. Technical Textiles, 2013, 285: 30-34. | |
[63] | 王宗宁, 高健, 孙宝剑, 等. 智能温控身份识别消防服的研究及应用[J]. 中国个体防护装备, 2020(6): 14-18. |
WANG Zongning, GAO Jian, SUN Baojian, et al. Research and application of intelligent temperature controlled and identity recognized fire fighting suit[J]. China Personal Protective Equipment, 2020(6): 14-18. | |
[64] | 田苗, 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014, 35(2): 109-115. |
TIAN Miao, LI Jun. Design mode and development tendency of smart clothing[J]. Journal of Textile Research, 2014, 35(2): 109-115. | |
[65] |
SUNG W T, HSIAO S J. The application of thermal comfort control based on smart house system of IoT[J]. Measurement, 2020, 149: 106997.
doi: 10.1016/j.measurement.2019.106997 |
[66] | 金鹏. 基于嵌入式系统的智能服装设计研究[D]. 无锡: 江南大学, 2021: 5-8. |
JIN Peng. Research on intelligent apparel product design based on embedded system[D]. Wuxi: Jiangnan University, 2021: 5-8. |
[1] | 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194. |
[2] | 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54. |
[3] | 郑晴, 严芳英, 柯莹, 王鸿博. 基于睡袋温标模型的被子舒适温度测定与可行性验证[J]. 纺织学报, 2023, 44(02): 151-158. |
[4] | 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111. |
[5] | 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208. |
[6] | 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118. |
[7] | 江舒, 李俊. 婴儿被服热舒适性研究进展[J]. 纺织学报, 2022, 43(08): 189-196. |
[8] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[9] | 黄锐, 肖爱民. 基于温湿度传感器的特护失禁内裤的研发[J]. 纺织学报, 2022, 43(07): 141-148. |
[10] | 郑雯洁, 张爱丹. 基于图像光影重构的缎纹影光织物明度预测方法[J]. 纺织学报, 2022, 43(05): 97-103. |
[11] | 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32. |
[12] | 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145. |
[13] | 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155. |
[14] | 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202. |
[15] | 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174. |
|