纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 41-49.doi: 10.13475/j.fzxb.20220309901

• 纤维材料 • 上一篇    下一篇

多孔与连通结构碳纳米纤维电极的设计及其电化学性能

王赫1,2, 王洪杰1,3(), 赵紫奕1, 张晓婉1, 孙冉1, 阮芳涛1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.苏州大学 纺织行业智能纺织服装柔性器件重点实验室, 江苏 苏州 215123
    3.安徽工程大学 安徽省先进纤维材料工程研究中心, 安徽 芜湖 241000
  • 收稿日期:2022-03-30 修回日期:2022-07-03 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 王洪杰
  • 作者简介:王赫(1987—),男,讲师,博士。主要研究方向为功能化碳纳米纤维的制备及应用。
  • 基金资助:
    纺织行业智能纺织服装柔性器件重点实验室开放课题(SDHY2222);安徽省先进纤维材料工程研究中心开放基金项目(2023AFMC08)

Design and electrochemical properties of porous and interconnected carbon nanofiber electrode

WANG He1,2, WANG Hongjie1,3(), ZHAO Ziyi1, ZHANG Xiaowan1, SUN Ran1, RUAN Fangtao1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University, Suzhou, Jiangsu 215123, China
    3. Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2022-03-30 Revised:2022-07-03 Published:2023-06-15 Online:2023-07-20
  • Contact: WANG Hongjie

摘要:

为开发设计具有高电化学性能的碳纳米纤维电极,采用静电纺丝技术、戊二醛交联和高温炭化制备聚丙烯腈/高直链淀粉(PAN/HAS)基碳纳米纤维,并对其形貌、元素组成、石墨化晶体结构和比表面积进行了研究。结果表明:经过戊二醛交联后的碳纳米纤维呈现连通结构,并具有优异的石墨晶体和多级孔结构、较大的比表面积(647 m2/g)和较高的总孔体积(0.60 cm3/g);将其制备成电极,在三电极体系下,当电流密度为1 A/g时比电容为255 F/g,当电流密度为20 A/g时比电容保持率高达71%;经过10 000次充放电循环后,电极比电容的保持率高达99.8%,显示出优异的循环耐久性。

关键词: 静电纺丝, 碳纳米纤维, 聚丙烯腈, 高直链淀粉, 电化学性能, 超级电容器

Abstract:

Objective Supercapacitors have shown good application potential in the field of energy storage and conversion due to their long span of life, environmental friendliness, higher security, fast charging and discharging capacity, and high power density, which attracted much research attention. As an important electrode material, the physical and chemical properties of carbon nanofibers affect the electrochemical performance of the electrode. However, the low specific surface area and porosity as well as the non-interconnected structure between fibers lead to the poor electrochemical performance of carbon nanofiber electrodes, which limits their development and application in supercapacitors. Therefore, it is imperative to design and develop good carbon nanofiber electrodes.
Method Porous and interconnected carbon nanofibers were prepared by electrospinning polyacrylonitrile (PAN) and high amylose starch (HAS) blends followed by pre-oxidation and carbonization. The cross-linking reaction between glutaraldehyde and starch was used to construct the interconnected structure of carbon nanofibers. Meanwhile, the thermal degradation of starch was used to create pore structures and increase specific surface areas of carbon nanofibers. During electrospinning, the voltage, distance, and extrusion speed were set as 20 kV, 15 cm, and 1.2 mL/h, respectively. The obtained nanofibers were pre-oxidized in a muffle furnace at 240 ℃ with a heating rate of 2 ℃/min for 2 h. The carbon nanofibers were prepared by carbonizing pre-oxidized nanofibers in a tubular furnace at 1 000 ℃ with a heating rate of 5 ℃/min for 2 h.
Results The addition of HAS and glutaraldehyde crosslinking had a great effect on the morphologies of nanofibers and carbon nanofibers. The prepared PAN/HAS nanofibers and carbon nanofibers had smaller diameters of 570 and 370 nm compared to the pure PAN nanofibers (910 nm) and carbon nanofibers (620 nm) (Fig. 1). After glutaraldehyde crosslinking, PAN/HAS-based carbon nanofibers had N and O co-doping with a high C content of 94.8% (Fig. 2). The presence of N and O elements as shown to improve the hydrophily and conductivity, and also to provide more active sites for carbon nanofibers. These characteristics played a positive role in improving the electrochemical performances of prepared carbon nanofiber electrodes. Moreover, the PAN/HAS-based carbon nanofibers with interconnected structures had better graphitized extents than non-interconnected carbon nanofibers (Fig. 3). The addition of HAS successfully increased the specific surface area, total pore volume, mesoporous volume, and microporous volume of carbon nanofibers, while the pore volume of carbon nanofibers crosslinked by glutaraldehyde was further increased. For carbon nanofiber electrodes, micropores were more conducive to the storage of ions, and mesopores were more conducive to the diffusion of ions. Their synergistic effect could improve the electrochemical performances of the electrodes (Fig. 4). The interconnected carbon nanofiber electrode had the best specific capacitances under cyclic voltammetry and galvanostatic charge-discharge measurements in a three-electrode system. At a scan rate of 10 mV/s, the specific capacitance was as high as 260 F/g, retaining 68% at a high scan rate of 200 mV/s (Fig. 5). The specific capacitance was as high as 255 F/g (1 A/g), retaining 71% at a high current density (20 A/g) (Fig. 6). In addition, after 10 000 charge and discharge cycles, the capacitance retention rate was as high as 99.8%, showing excellent cycle durability (Fig. 7).
Conclusion Porous and interconnected carbon nanofibers for supercapacitor electrodes were proposed by carbonizing electrospun PAN/HAS nanofibers. The fiber diameter, specific surface area, porosity, micro-meso pore content, and interconnected structure of PAN/HAS-based carbon nanofibers were tailored by glutaraldehyde crosslinking reaction. The prepared carbon nanofibers had nano-sized fiber diameter (370 nm), high C element content (94.8%), good graphitized extent, and also exhibited large specific surface area (647 m2/g), high total porous volume (0.60 cm3/g), high micropore content (67%), and small pore size (2.6 nm). These excellent physical and chemical properties could provide conditions for high-performance electrodes in supercapacitors. When interconnected PAN/HAS-based carbon nanofibers were used as active materials to prepare into electrodes, the electrode had a high specific capacitance about 255 F/g, a good rate capability about 71%, a low internal resistance about 0.64 Ω, and an excellent cycling stability about 99.8% after 10 000 charging and discharging cycles. The design of novel carbon nanofibers was expected to be widely applicable for the development of high-performance electrodes for energy storage field.

Key words: electrospinning, carbon nanofiber, polyacrylonitrile, high amylose starch, electrochemical property, supercapacitor

中图分类号: 

  • TQ343

图1

静电纺纳米纤维和碳纳米纤维的表面形貌及直径分布图"

图2

碳纳米纤维样品的XPS图谱"

表1

碳纳米纤维样品的元素含量"

样品编号 元素含量
C N O
4# 91.5 6.5 2.0
5# 93.3 3.1 3.6
6# 94.8 3.3 1.9

图3

碳纳米纤维的XRD图谱和拉曼光谱图"

图4

碳纳米纤维的氮气吸附-脱附等温曲线和孔径分布曲线"

表2

碳纳米纤维样品的孔特性结果"

样品
编号
比表面积/
(m2·g-1)
总孔体积/
(cm3·g-1)
介孔体积/
(cm3·g-1)
微孔体积/
(cm3·g-1)
微孔
含量/
%
平均
孔径/
nm
4# 95 0.14 0.12 0.02 14 6.0
5# 650 0.49 0.18 0.31 63 2.5
6# 647 0.60 0.20 0.40 67 2.6

图5

碳纳米纤维电极的CV曲线与倍率性能曲线"

图6

碳纳米纤维电极的GCD曲线与倍率性能曲线"

图7

碳纳米纤维电极的Nyquist图谱和循环性能曲线"

[1] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414: 345-352.
doi: 10.1038/35104620
[2] NASWALI E, ALEXANDER C, HAN H Y, et al. Supercapacitor energy storage for wind energy applications[J]. IEEE Transactions on Industry Applications, 2007, 43(3): 769-776.
doi: 10.1109/TIA.2007.895768
[3] LIU J X, CAO H, JIANG B, et al. Newborn 2D materials for flexible energy conversion and storage[J]. Science China Materials, 2016, 59(6): 459-474.
doi: 10.1007/s40843-016-5055-5
[4] BURKE A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50.
doi: 10.1016/S0378-7753(00)00485-7
[5] MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652.
doi: 10.1126/science.1158736
[6] WINTER M, BRODD R J. What are batteries, fuel cell, and supercapacitors[J]. Chemical Reviews, 2004, 104(10): 4245-4270.
doi: 10.1021/cr020730k
[7] 王赫, 王洪杰, 王闻宇, 等. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 材料导报, 2018, 32(5): 730-734.
WANG He, WANG Hongjie, WANG Wenyu, et al. Research progress in polyacrylonitrile (PAN) based carbon nanofibers electrode materials for super-capacitor[J]. Materials Reports, 2018, 32(5): 730-734.
[8] ZHI M, MANIVANNAN A, MENG F, et al. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors[J]. Journal of Power Sources, 2012, 208: 345-353.
doi: 10.1016/j.jpowsour.2012.02.048
[9] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
doi: 10.1039/b813846j pmid: 19690733
[10] NIU H, JIN Z, XIE Z, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J]. Carbon, 2011, 49(7): 2380-2388.
doi: 10.1016/j.carbon.2011.02.005
[11] WAND H, WAND W, WAND H, et al. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer[J]. ACS Applied Energy Materials, 2018, 1(2): 431-439.
doi: 10.1021/acsaem.7b00083
[12] CAI J, NIU H, LI Z, et al. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14946-14953.
[13] WANG H, NIU H, WANG H, et al. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance[J]. Journal of Power Sources, 2021. DOI: 10.1016/j.jpowsour.2020.228986.
doi: 10.1016/j.jpowsour.2020.228986
[14] ZUSSMAN E, CHEN X, DING W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon, 2005, 43(10): 2175-2185.
doi: 10.1016/j.carbon.2005.03.031
[15] 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329.
doi: 10.16085/j.issn.1000-6613.2020-1330
LI Xiangye, BAI Tianjiao, WENG Xin, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329.
doi: 10.16085/j.issn.1000-6613.2020-1330
[16] WANG H, WANG W, WANG H, et al. Improving supercapacitance of electrospun carbon nanofibers through increasing micropores and microporous surface area[J]. Advanced Materials Interfaces, 2019. DOI: 10.1002/admi.201801900.
doi: 10.1002/admi.201801900
[17] 王赫, 王洪杰, 阮芳涛. 牺牲聚合物法对碳纳米纤维结构与性能的影响[J]. 安徽工程大学学报, 2020, 35(6): 1672-2477.
WANG He, WANG Hongjie, RUAN Fangtao. Effect of sacrificial polymer method on structure and properties of carbon nanofibers[J]. Journal of Anhui Polytechnic University, 2020, 35(6): 1672-2477.
[18] 朱永号, 王闻宇, 金欣, 等. 静电纺淀粉纳米纤维的交联改性研究[J]. 功能材料, 2015, 46(5): 5048-5051.
ZHU Yonghao, WANG Wenyu, JIN Xin, et al. Studies on the crosslinking of electrospun starch nanofibers[J]. Journal of Functional Materials, 2015, 46(5): 5048-5051.
[19] WANG H, WANG H, RUAN F, et al. High-performance all-solid-state supercapacitor electrode materials using freestanding electrospun carbon nanofiber mats of polyacrylonitrile and novolac blends[J]. Macromolecular Materials and Engineering, 2021. DOI: 10.1002/mame.202100040.
doi: 10.1002/mame.202100040
[20] WU M, WANG Q, LI K, et al. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofiber[J]. Polymer Degradation and Stability, 2012, 97(8): 1511-1519.
doi: 10.1016/j.polymdegradstab.2012.05.001
[21] DASH R K, YUSHIN G, GOGOTSI Y. Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide[J]. Microporous & Mesoporous Materials, 2005, 86(1-3): 50-57.
[1] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[2] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[3] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[4] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[5] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[6] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[7] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[8] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[9] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[10] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[11] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[12] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[13] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[14] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202.
[15] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!