纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 50-56.doi: 10.13475/j.fzxb.20220402201

• 纤维材料 • 上一篇    下一篇

喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响

周歆如1, 范梦晶1, 胡铖烨2, 洪剑寒1,2,3, 刘永坤1,3, 韩潇1,3, 赵晓曼1,3()   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江洁达新材料科技有限公司, 浙江 绍兴 312035
    3.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2022-04-06 修回日期:2022-10-09 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 赵晓曼
  • 作者简介:周歆如(1998—),女,硕士生。主要研究方向为功能纳米纤维材料的开发与应用。
  • 基金资助:
    浙江省公益技术研究计划项目(LGJ21E030001);浙江省大学生科技创新活动计划项目(2022R432A019)

Effect of spinneret rate on structure and properties of nanofiber core-spun yarns prepared by continuous water bath electrospinning

ZHOU Xinru1, FAN Mengjing1, HU Chengye2, HONG Jianhan1,2,3, LIU Yongkun1,3, HAN Xiao1,3, ZHAO Xiaoman1,3()   

  1. 1. School of Textile and Apparel, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Zhejiang Jieda New Material Technology Co., Ltd., Shaoxing, Zhejiang 312035, China
    3. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
  • Received:2022-04-06 Revised:2022-10-09 Published:2023-06-15 Online:2023-07-20
  • Contact: ZHAO Xiaoman

摘要:

为实现工艺参数对纳米纤维包芯纱的结构调控,采用连续水浴静电纺丝的方法,以聚对苯二甲酸乙二醇酯(PET)纤维为芯纱,聚酰胺6(PA6)纳米纤维为包覆层,制备兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。对PET/PA6纳米纤维包芯纱的形态、晶体结构和力学性能进行分析与表征。结果表明:纳米纤维包芯纱具有良好的皮芯结构;PA6包覆层的纳米纤维直径为66~80 nm,其孔隙率随喷丝速率的提高而下降,结晶度在19%~24.15%范围内,且随喷丝速率的提高而减小;PA6纳米纤维包覆层的断裂强度和断裂伸长率随喷丝速率的增大而降低,其断裂强度降为常规PA6纤维的1/5;纳米纤维包芯纱保持了芯纱的强力与断裂伸长率等力学性能。

关键词: 聚酯, 聚酰胺6, 静电纺丝, 水浴法, 纳米纤维包芯纱, 喷丝速率, 结构与性能

Abstract:

Objective The spinneret rate as one of the electrostatic spinning parameters affects the performance of nanofiber core-spun yarns structure. This research aims to optimize the process parameters of electrospinning in order to meet the technical requirements for structure and properties of nanofiber core-spun yarns made from such made nanofibers.
Method A homemade electrostatic spinning device was set up for continuous preparation of nanofiber core-spun yarns. Through continuous double needle bath electrostatic spinning method, a core yarn was created using polyester (PET) as the core yarn, polyamide 6 (PA6) nanofibers as the coating layer, offering properties of the nanofibers and traditional yarn mechanical properties of nanofiber core-spun yarn. The morphology, crystal structure and mechanical properties of PET/PA6 nanofiber core-spun yarns were analyzed and characterized by scanning electron microscopy, differential scanning calorimetry and universal material testing machine. The influence of spinneret rate on the structure and properties of nanofiber core-spun yarns in double-needle water bath electrospinning was investigated.
Results By changing the spinneret rate in electrospinning process, the influence of different spinneret rates on the structure and properties of nanofiber core-spun yarn was analyzed. The results show that nanofibers could be formed on the surface of core yarn in the range of 0.10-0.40 mL/h spinneret rate, but the collection state and diameter of nanofibers were different. When the spinneret rate was greater than 0.10 mL/h, the adhesion phenomenon occurred between nanofibers due to the larger jet solution from the surface of Taylor cone. With the increase of spinneret rate, the diameter of nanofibers increased to a certain extent, and the porosity of PA6 nanofiber coating decreased because of the adhesion between nanofibers. In the range of 0.10-0.40 mL/h of spinneret rate, the crystallinity of nanofibers decreased with the increase of spinneret rate. When the spinneret rate is 0.10 mL/h and 0.15 mL/h, the crystallinity of nanofibers was within the range of conventional PA6 fiber crystallinity. The crystallinity of nanofibers was slightly less than that of conventional PA6 fibers. The reason was that the shape of Taylor cone was broken with higher spinneret rate, and the increasing instability of jet flow leads to the decrease of crystallinity. In the range of 0.10-0.40 mL/h spinneret rate, with the increase of spinneret rate, leading to the increase of breaking force. But the strength and elongation at break show a decreasing trend, which is consistent with the changing trend of crystallinity. The highest breaking strength was (0.66±0.13) cN/dtex at 0.10 mL/h, which was about 1/5 of that of conventional PA6 fiber. The breaking strength and elongation at break of nanofiber core-spun yarns were slightly higher than those of core-spun yarn, while the breaking strength of nanofiber core-spun yarns decreases with the increase of its linear density. Therefore, the combination with conventional fiber yarn is beneficial to improve its mechanical properties, and can give yarn high specific surface area, and expand the use of yarn.
Conclusion The prepared nanofiber cored yarn has a good cored structure according to the scanning electron microscope characterization of cross-section and surface morphology of nanofiber core-spun yarns. And the diameter of the coated nanofiber is 66-80 nm, and the porosity decreases with the increase of the spinneret rate. The crystallinity of nanofibers is in the range of 19%-24.15%, and decreases while spinneret rate increases. The strength and elongation at break of PA6 nanofiber coatings decrease with the increase of spinneret rate, and the strength of PA6 nanofiber coatings is about 1/5 of that of conventional polyamide 6 fibers. The nanofiber core-spun yarn maintains its mechanical properties such as strength and elongation at break. It is of great significance to study the influence of process parameters on the structure and performance of nanofiber core-spun yarns in the process of electrospinning, which can also bring thinking to researchers and provide reference for subsequent research and experiments.

Key words: polyester, polyamide 6, electrospinning, water bath method, nanofiber core-spun yarn, spinneret rate, structure and property

中图分类号: 

  • TQ340.69

图1

双针头连续水浴静电纺丝设备示意图"

图2

纳米纤维包芯纱截面结构及在不同喷丝速率下的表面形貌"

图3

不同喷丝速率下PA6 纳米纤维的直径分布"

图4

PA6纳米纤维包覆层的孔隙率及纳米纤维直径随喷丝速率的变化曲线"

图5

不同喷丝速率下PA6纳米纤维包覆层的DSC曲线"

图6

不同喷丝速率下纳米纤维包覆层的结晶度变化"

表1

不同喷丝速率下PA6纳米纤维包覆层的力学性能"

喷丝速率/
(mL·h-1)
断裂强
力/cN
包覆层线
密度/dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
0.10 26.51±8.95 40.50 0.66±0.13 44.46±10.89
0.15 25.81±4.73 71.30 0.36±0.07 33.21±9.01
0.20 39.20±9.21 108.60 0.36±0.08 28.61±6.39
0.30 50.65±8.63 141.80 0.35±0.06 36.89±9.88
0.40 44.38±10.03 182.20 0.24±0.08 29.59±9.39

表2

不同喷丝速率下纳米纤维包芯纱的力学性能"

喷丝速率/
(mL·h-1)
断裂强
力/cN
包芯纱线
密度/dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
PET芯纱 1 773±47 277.80 6.38±0.17 44.02±2.33
0.10 1 795±44 318.40 5.64±0.13 45.76±1.75
0.15 1 828±45 349.10 5.24±0.01 47.02±1.99
0.20 1 833±43 386.40 4.74±0.01 46.87±1.85
0.30 1 854±49 419.60 4.42±0.01 47.66±1.85
0.40 1 854±58 460.00 4.03±0.01 47.75±2.31
[1] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9.
doi: 10.1177/004051757204200101
[2] SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience & Nanotechnolgy, 2014, 14(2): 1389-1408.
[3] 周筱雅, 马定海, 胡铖烨, 等. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(2): 113-119.
ZHOU Xiaoya, MA Dinghai, HU Chengye, et al. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarn[J]. Journal of Textile Research, 2022, 43(2): 113-119.
[4] 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171.
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrospun nanofiber yarn[J]. Journal of Textile Research, 2020, 41(2): 165-171.
[5] RAVANDI S A H, SANATGAR R H, DABIRIAN F. Wicking phenomenon in nanofiber-coated filament-yarns[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(3): 10-18.
[6] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic submicron fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5): 694-702.
[7] SU C I, LAI T C, LU C H, et al. Yarn formation of nanofibers prepared using electrospinning[J]. Fibers and Polymers, 2013, 14(4): 542-549.
doi: 10.1007/s12221-013-0542-4
[8] TONG X, BIN J X. Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12303-12312.
doi: 10.1021/acs.iecr.5b03505
[9] MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018, 399: 406-413.
doi: 10.1016/j.jpowsour.2018.07.022
[10] LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016, 112: 456-461.
[11] HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062
[12] HE J X, QI K, WANG L D, et al. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn[J]. Fibers and Polymers, 2015, 16(6): 1319-1326.
doi: 10.1007/s12221-015-1319-8
[13] HE J X, ZHOU Y M, WANG L D, et al. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method[J]. Fibers and Polymers, 2014, 15(10): 2061-2065.
doi: 10.1007/s12221-014-2061-3
[14] YOUSEFZADEH M, LATIF M, TEO W E, et al. Producing continuous twisted yarn from well-aligned[J]. Polymer Engineering & Science, 2011, 51: 323-329.
[15] JIANG R, YAN T, WANG T Q, et al. The preparation of PA6/CS-NPs nanofiber filaments with excellent antibacterial activity via a one-step multineedle electrospinning method with liquid bath circling system[J]. Journal of Applied Polymer Science, 2020. DOI:10.1002/app.49053.
doi: 10.1002/app.49053
[16] TIAN L, YAN T, PAN Z J. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting[J]. Journal of Materials Science, 2015, 50(21):7137-7148.
doi: 10.1007/s10853-015-9270-z
[17] 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9): 95-100.
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9):95-100.
[18] 闫涛. 静电纺PAN/石墨烯复合纳米纤维纱的制备及其应变传感性能[D]. 苏州: 苏州大学, 2019:3,43-44.
YAN Tao. Preparation of electrospun PAN/graphene composite nanofiber yarn and its strain sensing performance[D]. Suzhou: Soochow University, 2019:3,43-44.
[19] 蒙冉菊, 王铁军, 翁浦莹, 等. 静电纺丝工艺参数对SS/PEO纳米纤维形貌及直径的影响[J]. 丝绸, 2018, 55(12):37-42.
MENG Ranju, WANG Tiejun, WENG Puying, et al. Effects of electrospinning parameters on the morphology and diameter of AS/PEO nanofibers[J]. Journal of Silk, 2018, 55(12): 37-42.
[20] 刘呈坤, 贺海军, 孙润军, 等. 纺丝工艺对静电纺纳米纤维包芯纱包覆性能的影响[J]. 高分子材料科学与工程, 2016, 32(12): 82-86.
LIU Chengkun, HE Haijun, SUN Runjun, et al. Effect of spinning process on the coating properties of electrospun nanofiber core-spun yarn[J]. Polymer Materials Science and Engineering, 2016, 32(12): 82-86.
[21] 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43,48.
WANG Yiting, ZHAN Jianchao, WANG Ying. Electorspun of polyurethane-Fe3O4 nanofiber core spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43,48.
[22] 周歆如, 胡铖烨, 范梦晶, 等. 基于水浴静电纺的纳米纤维包芯纱连续制备与性能[J]. 现代纺织技术, 2022, 30(6): 80-87.
ZHOU Xinru, HU Chengye, FAN Mengjing, et al. Continuous preparation and properties of nanofiber core-spun yarn based on water bath electronspinning[J]. Advanced Textile Technology, 2022, 30(6): 80-87.
[23] 王丹, 单小红, 潘红贵. Photoshop和Matlab软件在纳米纤维膜孔隙率测试中的应用[J]. 产业用纺织品, 2016, 34(6): 41-44.
WANG Dan, SHAN Xiaohong, PAN Honggui. Application of Photoshop and Matlab software on porosity test of nanofibers mat[J]. Technical Textiles, 2016, 34(6): 41-44.
[24] 丁彬, 俞建勇. 功能静电纺纤维材料[M]. 北京: 中国纺织出版社, 2019:10-11.
DING Bin, YU Jianyong. Functional electrospinning nanofiber materials[M]. Beijing: China Textile & Apparel Press, 2019:10-11.
[25] 姚穆. 纺织材料学[M]. 4版. 北京: 中国纺织出版社, 2009:136.
YAO Mu. Textile materials[M]. 4th ed. Beijing: China Textile & Apparel Press, 2009: 136.
[1] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[2] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[3] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[4] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[5] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[6] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[7] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123.
[8] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[9] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[10] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[11] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[12] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[13] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[14] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[15] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!