纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 57-65.doi: 10.13475/j.fzxb.20220103301

• 纤维材料 • 上一篇    下一篇

抗菌聚丙烯熔喷材料的反应挤出法制备及其性能

陈卓1, 戴钧明2, 潘晓娣2, 李沐芳1,3, 刘轲1,3, 赵青华1,3()   

  1. 1.武汉纺织大学 技术研究院, 湖北 武汉 430200
    2.中国石化仪征化纤有限责任公司, 江苏 扬州 211900
    3.纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
  • 收稿日期:2022-01-14 修回日期:2022-10-09 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 赵青华
  • 作者简介:陈卓(1998—),男,硕士生。主要研究方向为功能纤维材料制备。
  • 基金资助:
    湖北省科技创新专项(2021BAA067);湖北省揭榜制科技项目(2021BEC014)

Fabrication and properties of antibacterial polypropylene melt-blown nonwoven fabrics by reactive extrusion

CHEN Zhuo1, DAI Junming2, PAN Xiaodi2, LI Mufang1,3, LIU Ke1,3, ZHAO Qinghua1,3()   

  1. 1. Technology and Research Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Sinopec Yizheng Chemical Fibre Co., Ltd., Yangzhou, Jiangsu 211900, China
    3. Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan, Hubei 430200, China
  • Received:2022-01-14 Revised:2022-10-09 Published:2023-06-15 Online:2023-07-20
  • Contact: ZHAO Qinghua

摘要:

为制备高效抗菌的医用材料,利用反应挤出工艺将氯胺前驱体甲基丙烯酰胺(MAM)通过自由基接枝到聚丙烯(PP)主链上,制备出改性聚丙烯接枝甲基丙烯酰胺(PP-g-MAM)母粒,然后通过熔喷纺丝制备得到熔喷材料并进行氯化处理,对其组成结构、耐热性、力学性能、表面形态、过滤效果和抗菌性能进行综合评价。结果表明:MAM成功接枝到了PP分子链上,且改性对PP的耐热性、熔喷材料的纤维形貌及力学性能影响较小;PP-g-MAM熔喷材料对粒径≥0.3 μm的氯化钠气溶胶的过滤效率为98.6%,氯化熔喷材料的过滤效率下降4%~14%,但可通过电晕再驻极使过滤效率恢复到98%以上;在氯化溶液pH值为5且氯化时间为10 min时,氯化PP-g-MAM熔喷材料中的活性氯含量超过0.03%,其对金黄色葡萄球菌的抑菌率超过98%,且与大肠杆菌接触20 min后抑菌率超过99%。

关键词: 聚丙烯熔喷材料, 接枝, 甲基丙烯酰胺, 熔融反应挤出, 活性氯含量, 医用材料, 抗菌纺织品

Abstract:

Objective Because of the different biological structure of virus and bacteria, traditional antibacterial polypropylene melt-blown nonwoven fabric is difficult to have good killing effect on virus. Hypochlorite or chlorine-containing disinfectant that can release active chlorine has been reported to have excellent inactivation effect on bacteria and viruses. Therefore, the design of a polypropylene melt-blown nonwoven fabric was carried out to release active chlorine in order to effectively solve the problem of poor inactivity of air filter materials on viruses.
Method Modified polypropylene (PP) grafted methyl acrylamide (MAM) resin was prepared by using reactive extrusion process to graft the halogen amine precursor onto the PP molecular chain through a free radical initiator, before the PP-g-MAM resin was added to the melt-blowing machine. The PP-g-MAM melt-blown nonwoven fabric for chlorination and re-electret was fabricated, in order to obtain polypropylene melt-blown nonwoven fabric with high efficiency filtration and sterilization and antiviral function. Scanning electron microscope was used to characterize the average diameter of PP-g-MAM melt-blown nonwoven fibers and the fiber diameter distribution.
Results The average diameter of PP-g-MAM melt-blown nonwoven fibers is 7.24 μm, and the fiber diameter distribution is concentrated in 1-3 μm (Fig. 7). Compared with the pure PP resin, two new characteristic peaks appeared in the wavelength range of 1 700-1 500 cm-1 for the purified PP-g-MAM resin, corresponding to the C=O bond stretching vibration peak of 1 668 cm-1 and the N—H bond bending vibration peak of 1 600 cm-1 (Fig. 4). The grafting efficiency and grafting rate of MAM was 43.02% and 1.01% by organic element content detection. In the thermal weight loss behavior, the thermogravimetric (TG) curves of PP resin and PP-g-MAM resin almost coincided, and so did the differential thermogravimetric (DTG) curves (Fig. 5), where the initial and termination decomposition temperatures of PP-g-MAM resin were 427.9 and 469.2 ℃, respectively. In terms of mechanical properties, the tensile stress at break of PP-g-MAM melt-blown nonwoven fabric is between 1.14-1.19 MPa, and the elongation at break is about 70% (Fig. 6). The filtration effect of PP-g-MAM melt-blown nonwoven fabric on 0.3 μm particles is 98.6% (Fig. 8). After chlorination, the filtration effect decreases by 4%-14%, and the longer the chlorination time, the more the filtration performance decreases. After chlorination re-electret, the filtration performance of PP-g-MAM melt-blown nonwoven fabric is restored to more than 98%. The pore size of PP-g-MAM melt-blown nonwoven fabric has a certain increase compared with PP melt-blown nonwoven fabric(Fig. 9). In the chlorination process, PP-g-MAM melt-blown nonwoven fabrics chlorinated in acidic environment have more active chlorine content, and the longer the chlorination time, the higher the active chlorine content(Fig. 10). Under the condition of chlorinated solution pH value of 5 and chlorination time of 15 min, the content of active chlorine in chlorinated PP-g-MAM melt-blown nonwoven fabric is 0.038%. The antibacterial rate of chlorinated PP-g-MAM melt-blown nonwoven fabric against Escherichia coli and Staphylococcus aureus was more than 98% (Fig. 12), and the antibacterial rate against Escherichia coli was more than 99% under the contact time of 20 min (Fig. 13).
Conclusion MAM was successfully grafted into the polypropylene molecular chain. However, PP-g-MAM melt-blown materials and PP melt-blown materials have little difference in performance, so the grafting of MAM has little effect on the heat resistance, mechanical properties and fiber morphology of PP melt-blown materials. Due to chlorinated solution immersion reasons, PP-g-MAM electret melt-blown nonwoven fabric electrostatic charge is lost with the solution, which leads to significant decrease in the chlorination of nonwoven fabric filtration performance, and in the electret again, nonwoven fabric filtration performance restored to the level before chlorination. In the chlorination process, the acidic condition of chlorinated solution is more likely to improve the content of active chlorine in PP-g-MAM melt-blown nonwoven fabrics, which may be due to the high content of hypochlorous acid in the acidic environment solution, which is easier to transform the halo amine precursor, and the longer the chlorination time, the more the grafted halo amine precursor is transformed. Chlorinated PP-g-MAM melt-blown nonwoven fabrics can effectively kill Escherichia coli and Staphylococcus aureus.

Key words: polypropylene melt-blown material, grafted, methyl acrylamide, melt reactive extrusion, active chlorine content, medical material, antibacterial textiles

中图分类号: 

  • TS176.4

图1

熔融接枝共聚制备PP-g-MAM的反应机制"

图2

PP-g-MAM母粒及其熔喷材料的制备示意图"

图3

PP-g-MAM熔喷材料氯化及活性氯滴定示意图"

图4

PP-g-MAM、MAM及PP母粒的红外光谱图"

图5

纯PP与PP-g-MAM母粒的TG与DTG曲线"

图6

纯PP及PP-g-MAM熔喷材料的拉伸强度-伸长率曲线"

图7

PP和PP-g-MAM熔喷材料的扫描电镜照片及其纤维直径分布图"

图8

氯化PP-g-MAM和氯化再驻极PP-g-MAM熔喷材料的过滤性能"

图9

PP与PP-g-MAM熔喷材料纤维间的孔径分布"

图10

氯化溶液pH值和氯化时间对PP-g-MAM熔喷材料中活性氯含量的影响"

图11

PP-g-MAM熔喷材料在不同氯化时间下所对应2次滴定的活性氯含量"

图12

氯化PP-g-MAM熔喷材料对大肠杆菌及金黄色葡萄球菌的抗菌效果图"

图13

不同接触时间下氯化PP-g-MAM熔喷材料对大肠杆菌抑菌率的变化"

[1] 陈凤翔, 翟丽莎, 刘可帅, 等. 防护口罩研究进展及其发展趋势[J]. 西安工程大学学报, 2020, 34(2): 1-12.
CHEN Fengxiang, ZHAI Lisha, LIU Keshuai, et al. Reaearch progress and its developing trend of protective masks[J]. Journal of Xi'an Polytechnic University, 2020, 34(2):1-12.
[2] KRAMER A, SCHWEBKE I, KAMPF G. How long do nosocomial pathogens persist on inanimate surfaces?a systematic review[J]. BMC Infect Dis, 2006. DOI: 10.1186/1471-2334-6-130.
doi: 10.1186/1471-2334-6-130
[3] 杨然, 王佳宝, 张晶, 等. 聚丙烯无纺布表面功能化及其抗菌性能[J]. 纸和造纸, 2020, 39(2): 19-24.
YANG Ran, WANG Jiabao, ZHANG Jing, et al. Surface functionalization and antibacterial properties of polypropylene nonwovens[J]. Paper and Paper Making, 2020, 39(2):19-24.
[4] DEMIR B, CERKEZ I, WORLEY S D, et al. N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria[J]. ACS Appl Mater Interfaces, 2015, 7(3): 1752-1757.
doi: 10.1021/am507329m
[5] 王兴雪, 刘峻, 张瑜, 等. 聚丙烯/无机纳米抗菌剂共混纤维的研制[J]. 金山油化纤, 2004(2): 14-17.
WANG Xingxue, LIU Jun, ZHANG Yu, et al. Development of polypropylene/inorganic nano antibacterial agent blend fiber[J]. Jinshan Oil Chemical Fiber, 2004(2):14-17.
[6] LIU C, DAI Z, ZHOU R, et al. Fabrication of polypro-pylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology[J]. Journal of Chemistry, 2019( 2019): 1-11.
[7] KENAWY E R, WORLEY S D, BROUGHTON R. The chemistry and applications of antimicrobial polymers:a state-of-the-art review[J]. Biomacromolecules, 2007, 8(5): 1359-1384.
doi: 10.1021/bm061150q
[8] WANG D, XU W, SUN G, et al. Radical graft polymeriz-ation of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes[J]. ACS Appl Mater Interfaces, 2011, 3(8): 2838-2844.
doi: 10.1021/am200286a
[9] BADROSSAMAY M R, SUN G. Preparation of recharge-able biocidal polypropylene by reactive extrusion with diallylamino triazine[J]. European Polymer Journal, 2008, 44(3): 733-742.
doi: 10.1016/j.eurpolymj.2007.12.005
[10] BADROSSAMAY M R, SUN G. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion[J]. J Biomed Mater Res B Appl Biomater, 2009, 89(1): 93-101.
[11] DEWAR E J, WAYMAN M. Diffusion of positive chlorine in macroreticular resins[J]. The Canadian Journal of Chemical Engineering, 1971, 49(6): 758-766.
doi: 10.1002/cjce.v49:6
[1] 王瑞, 司银松, 芦浩浩, 杲爽, 傅雅琴. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
[2] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[3] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
[4] 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110.
[5] 方帅军, 郑培晓, 程双娟, 李欢欢, 钱红飞. 甲基丙烯酰胺接枝桑蚕丝接枝率的数学模型构建与定量分析[J]. 纺织学报, 2022, 43(02): 156-161.
[6] 李伟, 张正桥, 徐珍珍, 张朝辉. 双亲两嵌段接枝淀粉浆料的制备及其上浆性能[J]. 纺织学报, 2022, 43(01): 141-146.
[7] 魏发云, 杨帆, 王海楼, 于斌, 邹学书, 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60.
[8] 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136.
[9] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
[10] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[11] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[12] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[13] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[14] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[15] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!