纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 72-77.doi: 10.13475/j.fzxb.20220203101

• 纺织工程 • 上一篇    下一篇

基于横向振动频率的轴向运动纱线张力测量

李杨1, 彭来湖1,2(), 刘建廷1, 胡旭东1, 郑秋扬1   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学龙港研究院有限公司, 浙江 温州 325000
  • 收稿日期:2022-02-23 修回日期:2022-11-25 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 彭来湖
  • 作者简介:李杨(1994—),男,博士生。主要研究方向为纺织装备自动化。
  • 基金资助:
    浙江省博士后科研项目特别资助项目(ZJ2020004)

Measurement of yarn tension in axial direction based on transverse vibration frequency

LI Yang1, PENG Laihu1,2(), LIU Jianting1, HU Xudong1, ZHENG Qiuyang1   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Longgang Research Institute Co., Ltd., Wenzhou, Zhejiang 325000, China
  • Received:2022-02-23 Revised:2022-11-25 Published:2023-06-15 Online:2023-07-20
  • Contact: PENG Laihu

摘要:

为高效、便捷地检测纱线张力,构建了一种基于横向振动频率的非接触检测纱线张力方法。利用弦振动原理推导出纱线横向振动方程,根据纱线振动方程计算纱线振动频率。以轴向运动纱线的张力、速度和频率的拟合公式,通过测量纱线的振动频率可方便快捷地计算出纱线张力。将计算结果经过广义回归神经网络(GRNN)模型进行拟合,进一步提高测量结果的准确性。采用高速相机测量纱线的横向振动位移,并检测纱线的振动频率。利用频率法对32 tex纱线在设定张力分别为40和60 cN,速度分别为6和2 m/s时的张力进行测量。结果表明,利用振动频率测量纱线张力的数据经GRNN拟合,其曲线整体趋势与张力传感器测量的张力趋势相同且更加平滑,便于对生产过程中张力的控制,该方法具有有效性和准确性。

关键词: 纱线张力, 非接触检测, 横向振动, 频率, 高速相机

Abstract:

Objective In the process of textile production, constant yarn tension is essential to ensure product quality, and excessive tension during yarn transmission will cause sudden stress change or even yarn breakage and will affect fabric formation, resulting in inelastic fabric structure and seriously affecting the quality of products. In order to detect yarn tension efficiently and conveniently, a method based on transverse vibration frequency non-contact detection of yarn tension is developed.
Method The transverse vibration characteristics of a moving yarn were studied by combining theoretical modeling, numerical analysis and experimental verification. The equation of yarn transverse vibration was derived based on chord vibration theory, and the yarn vibration frequency was obtained. The yarn tension was further calculated according to the relationship between frequency and tension. A yarn tension measurement method based on transverse vibration frequency measurement was proposed, and an open structure yarn transmission experimental platform was designed and built for experimental verification. The measured values were fitted to the generalized regression neural network model.
Results When the linear density is constant, the yarn vibration frequency increases with the increasing velocity; the greater the linear density, the smaller the yarn vibration frequency. First, the geometric parameters of the moving yarn are determined, and the fitting formula among the yarn motion speed, vibration frequency and tension is established. Then, the yarn vibration frequency and velocity data were obtained experimentally, and the vibration frequency and motion velocity were substituted into the fitting formula to obtain the yarn tension. Finally, the calculated yarn tension was fitted using the GRNN model to obtain the final tension results. The data generalized regression neural network fitting curve using the vibration frequency for measuring the yarn tension is on the same overall trend as the tension trend measured by the tension sensor(Fig. 5 and Fig. 6). In the actual working state, the yarn vibration frequency will be disturbed by other external factors such as machine vibration, and the yarn tension measured by the vibration frequency will also produce large fluctuations, so that the measurement results show a dispersed state is not conducive to the real-time control of the tension. Due to the uncertainty of the geometric parameters of the yarn, the error of the fitting formula, and the accuracy of the vibration frequency obtained by the high-speed camera, there are some errors in measuring the yarn tension based on the vibration. However, the measurement accuracy of the method can also be further improved, such as using a more accurate signal processing technology to process the vibration displacement signal. At the same time, although this method can effectively measure the yarn tension, but still has a certain application range. As the velocity increases, the system vibration frequency gradually decreases and disappears at the critical velocity. Therefore, in order to detect the vibration frequency of the system vibration, the yarn movement speed is less than the critical speed of the instability.
Conclusion The yarn vibration equation of the string vibration theory is established, and then the yarn vibration frequency is calculated by the fitting formula between the yarn tension, motion speed and vibration frequency; then the result is fitted through the generalized regression neural network model. The accuracy and reliability of the measurement of the yarn tension and the fitting algorithm are verified. At the same time, the influence of yarn density and motion speed on vibration frequency is also considered, and it has strong applicability for yarn with different line density and different motion speed.

Key words: yarn tension, non-contact testing, lateral vibration, frequency, high speed camera

中图分类号: 

  • TS181.9

图1

纱线运动系统模型"

图2

纱线张力检测实验平台"

表1

不同线密度下纱线张力计算结果"

线密度/
tex
运动速度/
(m·s-1)
振动频
率/Hz
纱线张
力/cN
张力误
差/%
2 23.25 20.31 1.15
4 25.98 41.68 4.20
18 6 28.56 63.15 5.25
8 29.86 80.96 1.21
10 32.62 103.50 3.50
2 14.04 20.86 4.30
4 15.79 40.88 2.21
32 6 16.98 63.20 5.33
8 18.95 78.46 1.93
10 20.59 105.93 5.93
2 8.43 18.65 6.75
4 9.46 38.88 2.80
45 6 10.53 63.00 3.75
8 11.23 82.46 3.07
10 11.70 91.20 0.88

图3

采用频率法测量的纱线张力"

图4

振动法计算纱线张力流程"

图5

在张力为40 cN和速度为6 m/s时基于振动频率检测张力和传感器检测张力测量结果对比"

图6

在张力为60 cN和速度为2 m/s时基于振动频率检测张力和传感器检测张力测量结果对比"

[1] 韩帅. 纱线张力精密控制器的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015:4.
HAN Shuai. The study of the precision of yarn tension controller[D]. Harbin: Harbin Institute of Technology, 2015:4.
[2] 章钰娟, 彭来湖, 徐郁山, 等. 非接触式纱线状态检测技术研究[J]. 现代纺织技术, 2021(10): 1-10.
ZHANG Yujuan, PENG Laihu, XU Yushan, et al. Research on non-contact yarn state detection technology[J]. Advanced Textile Technology, 2021(10): 1-10.
[3] 成玲, 梁银铮. 纱线的动态力学性能[J]. 纺织学报, 2006, 27 (8): 19-21.
CHENG Ling, LIANG Yinzheng. The dynamic mechanics performance of the yarn[J]. Journal of Textile Research, 2006, 27(8): 19-21.
[4] 戴宁, 胡旭东, 彭来湖. 针织大圆机运动实时控制技术[J]. 纺织学报, 2019, 40(12): 134-139.
DAI Ning, HU Xudong, PENG Laihu. Real time motion control technology circular knitting machine[J]. Journal of Textile Research, 2019, 40(12): 134-139.
[5] 王亮. 轴向运动梁动力学及控制研究[D]. 南京: 南京航空航天大学, 2012:4.
WANG Liang. Study on dynamics and control of axially moving beam[M]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012:4.
[6] 石军. 轴向运动物体参激不稳定性研究及其控制[D]. 苏州: 苏州大学, 2012: 22-26.
SHI Jun. Study on the parametric instability of an axially moving object and its control[M]. Suzhou: Soochow University, 2012:22-26.
[7] VEDRINES M, GASSMANN V, KNITTEL D. Moving web-tension determination by out-of-plane vibration measurements using a laser[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 207-213.
doi: 10.1109/TIM.2008.928408
[8] ABRATE S. Vibrations of belts and belt drives[J]. Mechanism and Machine Theory, 1992, 27(6): 645-659.
doi: 10.1016/0094-114X(92)90064-O
[9] XIA C, WU Y, LU Q. Experimental study of the nonlinear characteristics of an axially moving string[J]. Journal of Vibration and Control, 2015, 21(16): 3239-3253.
doi: 10.1177/1077546314520832
[10] DOIGNON C, KNITTEL D, MAURICE X. A vision-based technique for edge displacement and vibration estimations of a moving flexible web[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8): 1605-1613.
doi: 10.1109/TIM.2008.925712
[11] 缪宇轩. 非接触式张力监测系统的研制与开发[D]. 南京: 南京航空航天大学, 2020:35-38.
MIAO Yuxuan. Development of non-contact tension monitoring system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:35-38.
[12] 周泰. 用谐振频率测量纺丝张力的研究[J]. 自动化仪表, 1987(9):12-15, 36.
ZHOU Tai. Study on measurement of spinning tension by resonant frequency[J]. Automation Instrumentation, 1987(9):12-15, 36.
[1] 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204.
[2] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[3] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[4] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[5] 戴宁, 彭来湖, 胡旭东, 钟垚森, 戚栋明. 基于轴向运动悬臂梁理论的无缝内衣机织针横向振动特性[J]. 纺织学报, 2021, 42(02): 193-20.
[6] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越锋. 基于Euler-Bernoulli梁理论的无缝内衣机织针编织过程固有频率特性研究[J]. 纺织学报, 2020, 41(12): 144-150.
[7] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[8] 莫帅, 冯战勇, 党合玉, 邹振兴, 王迪文, 朱红伟. 高速纺纱锭子弹性管减振机制与振动特性[J]. 纺织学报, 2020, 41(03): 148-153.
[9] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[10] 焦亚男, 杨志, 张世浩. 实验参数对高性能石英纤维摩擦性能的影响[J]. 纺织学报, 2019, 40(07): 38-43.
[11] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(06): 106-110.
[12] 孙帅 缪旭红 张灵婕 胡瑜. 经编纱线张力补偿装置的工作机制[J]. 纺织学报, 2018, 39(11): 140-144.
[13] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[14] 胡瑜 刘行 缪旭红. 经编纱线动态张力评价指标[J]. 纺织学报, 2018, 39(02): 68-72.
[15] 扈昕瞳 张玉井 孟婥 孙以泽. 编织锭子放线速度对纱线张力调控的建模与影响[J]. 纺织学报, 2017, 38(06): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!