纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 91-97.doi: 10.13475/j.fzxb.20220407401
付驰宇1,2,3, 徐傲2, 齐硕2, 王凯2, 缪莹2, 尚路路2, 夏治刚1,2,4()
FU Chiyu1,2,3, XU Ao2, QI Shuo2, WANG Kai2, MIAO Ying2, SHANG Lulu2, XIA Zhigang1,2,4()
摘要:
为研究开发高性能纺织基人工肌肉,设计并制备了以镍钛合金为芯丝、聚酰亚胺纤维为外包纤维的热驱动复合纱线致动器。利用该复合包芯纱成功制备了一种形状可编程的机织物致动器,并初步探索了复合纱线及其织物的力学性能和热驱动特性。研究结果表明:复合纱线及其织物受热驱动后将恢复到初始线性状态,加载的温度越高,形状记忆复合纱线的模量越大,回复应力也越大;该纱线具有良好的电加热和热稳定性能,加载的电流和电压越大,纱线温度越高,达到稳定态的时间越短;纱线在5 V电压下能在6.2 s内完成驱动。该复合织物致动器具有耐高温、形状可编程的特性,可实现不同模式的驱动。
中图分类号:
[1] |
FU Chiyu, XIA Zhigang, HURREN Christopher, et al. Textiles in soft robots: current progress and future trends[J]. Biosensors and Bioelectronics, 2022. DOI: 10.1016/j.bios.2021.113690.
doi: 10.1016/j.bios.2021.113690 |
[2] |
HARTMANN Florian, BAUMGARTNER Melanie, KALTENBRUNNER Martin. Becoming sustainable, the new frontier in soft robotics[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202004413.
doi: 10.1002/adma.202004413 |
[3] |
BÜTZER Tobias, LAMBERCY Olivier, ARATA Jumpei, et al. Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities[J]. Soft Robotics, 2020, 8(2): 128-143.
doi: 10.1089/soro.2019.0135 |
[4] |
EBRAHIMI Nafiseh, BI Chenghao, CAPPELLERI David J, et al. Magnetic actuation methods in bio/soft robotics[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202005137.
doi: 10.1002/adfm.202005137 |
[5] |
SANCHEZ Vanessa, WALSH Conor J, WOOD Robert J. Textile technology for soft robotic and autonomous garments[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202008278.
doi: 10.1002/adfm.202008278 |
[6] |
SUN Wenjie, LI Bo, ZHANG Fei, et al. TENG-Bot: triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106012.
doi: 10.1016/j.nanoen.2021.106012 |
[7] |
NIU Dong, LI Dachao, CHEN Jinlan, et al. SMA-based soft actuators with electrically responsive and photoresponsive deformations applied in soft robots[J]. Sensors and Actuators A: Physical, 2022. DOI: 10.1016/j.sna.2022.113516.
doi: 10.1016/j.sna.2022.113516 |
[8] |
MCCRACKEN Joselle M, DONOVAN Brian R, LYNCH Kelsey M, et al. Molecular engineering of mesogenic constituents within liquid crystalline elastomers to sharpen thermotropic actuation[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100564.
doi: 10.1002/adfm.202100564 |
[9] |
YING Binbin, LIU Xinyu. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond[J]. iScience, 2021. DOI: 10.1016/j.isci.2021.103174.
doi: 10.1016/j.isci.2021.103174 |
[10] | KHEIRIKHAH Mohammad Mahdi, RABIEE Samaneh,EDALAT Mohammad Ehsan. A review of shape memory alloy actuators in robotics[C]// RUIZ-DEL-SOLAR J, CHOWN E, PLÖGER PG. Robot Soccer World Cup XIV. Berlin: Springer, 2011: 206-217. |
[11] |
MOHD JANI Jaronie, LEARY Martin, SUBIC Aleksandar, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56: 1078-1113.
doi: 10.1016/j.matdes.2013.11.084 |
[12] | YUEN M C, BILODEAU R A, KRAMER R K. Active variable stiffness fibers for multifunctional robotic fab-rics[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 708-715. |
[13] |
HAN Min Woo, AHN Sung Hoon. Blooming knit flowers: loop-linked soft morphing structures for soft robotics[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201606580.
doi: 10.1002/adma.201606580 |
[14] |
HAN Min Woo, KIM Min Soo, AHN Sung Hoon. Shape memory textile composites with multi-mode actuations for soft morphing skins[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108170.
doi: 10.1016/j.compositesb.2020.108170 |
[15] | 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(5): 50-57. |
XIONG Xiangzhang, PEI Zeguang, CHEN Ge. Study on actuating force of knit actuator based on covered yarn with shape memory alloy wire as core[J]. Journal of Textile Research, 2020, 41(5): 50-57. | |
[16] |
SOOTHER Dileep Kumar, DAUDPOTO Jawaid, CHOWDHRY Bhawani Shankar. Challenges for practical applications of shape memory alloy actuators[J]. Materials Research Express, 2020. DOI: 10.1088/2053-1591/aba403.
doi: 10.1088/2053-1591/aba403 |
[17] |
XU Zhizhi, HAO Yanshuang, JI Yuanchao, et al. Simultaneously increasing the strength and decreasing the modulus in TiNi alloys via plastic deformation[J]. Scripta Materialia, 2022. DOI: 10.1016/j.scriptamat.2021.114374.
doi: 10.1016/j.scriptamat.2021.114374 |
[18] |
JIANG Surong, CHEN Bai, QI Fei, et al. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2020. DOI: 10.1002/rcs.2081. 10.1002/rcs.2081.
doi: 10.1002/rcs.2081. 10.1002/rcs.2081 |
[1] | 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193. |
[2] | 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(05): 50-57. |
[3] | 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196. |
[4] | 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102. |
|