纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 10-17.doi: 10.13475/j.fzxb.20220203301
ZHAO Mingshun1, CHEN Xiaoxiong1, YU Jinchao1,2, PAN Zhijuan1,2()
摘要:
为得到兼具光致变色性能与力学性能的光致变色聚乳酸(PLA)纤维,将PLA和光致变色微胶囊通过熔体纺丝及热拉伸工艺制备出光致变色PLA纤维,并系统分析了纤维的形貌、结晶及热学性能,着重研究了光致变色微胶囊对纤维力学及可逆变色行为的影响,揭示纤维性能差异对其内部结构的影响。结果表明:光致变色PLA纤维的断裂强度随着光致变色微胶囊质量分数的增加而减小,结晶度呈先上升后下降趋势,当光致变色微胶囊质量分数为2%时具有与纯PLA相当的断裂强度,为4.15 cN/dtex,且结晶度达到最大55.42%;光致变色PLA纤维的光致变色性能呈现出高灵敏度、优异褪色性及光稳定性,且变色强度随光致变色微胶囊质量分数的增加而提高,但非线性上升,通过调整光致变色微胶囊的质量分数,可以达到纤维变色功能与力学性能兼具的目标。
中图分类号:
[1] |
SUN X, ZHANG J, LU X, et al. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes[J]. Angewandte Chemie, 2015, 127(12): 3701-3705.
doi: 10.1002/ange.201412475 |
[2] |
YANG Y, ZHANG M, JU Z, et al. Poly (lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications[J]. Textile Research Journal, 2021, 91(13/14): 1641-1669.
doi: 10.1177/0040517520984101 |
[3] | 程博闻, 西鹏, 庄旭品. 光致发光与变色纤维发展趋势[J]. 纺织科学研究, 2020(4):70-71. |
CHENG Bowen, XI Peng, ZHUANG Xupin. Development trend of photoluminescent and color-changing fibers[J]. Textile Science Research, 2020(4):70-71. | |
[4] |
SHEN X, HU Q, GE M. Fabrication and characterization of multi stimuli-responsive fibers via wet-spinning process[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021.DOI:10.1016/j.saa.2020.119245.
doi: 10.1016/j.saa.2020.119245 |
[5] |
PINTO T V, FERNANDES D M, GUEDES A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology[J]. Chemical Engineering Journal, 2018, 350: 856-866.
doi: 10.1016/j.cej.2018.05.155 |
[6] | 邢善静, 谢跃亭, 曹俊友, 等. 光致变色再生纤维素纤维的研制及应用[J]. 针织工业, 2016(8):1-3. |
XING Shanjing, XIE Yueting, CAO Junyou, et al. Development and application of photochromic regenerated cellulose fiber[J]. Knitting Industries, 2016(8):1-3. | |
[7] | 卞雪艳, 朱平, 楚旭东, 等. 光致变色海藻纤维的制备及性能研究[J]. 合成纤维, 2018, 47(8):1-5. |
BIAN Xueyan, ZHU Ping, CHU Xudong, et al. Preparation and properties of photochromic seaweed fibers[J]. Synthetic Fibers, 2018, 47(8):1-5. | |
[8] |
KAAVESSINA M, ALI I, ELLEITHY R H, et al. Crystallization behavior of poly (lactic acid)/elastomer blends[J]. Journal of Polymer Research, 2012, 19(2): 1-12.
doi: 10.1007/s10965-012-0001-8 |
[9] | 张春艳, 陈丽华. 光致变色织物变色效果的测试条件分析[J]. 北京服装学院学报(自然科学版), 2020, 40(2):40-45. |
ZHANG Chunyan, CHEN Lihua. Test condition analysis of color change effect of photochromic fabric[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2020, 40(2):40-45. | |
[10] |
OZKOC G, KEMALOGLU S. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA[J]. Journal of Applied Polymer Science, 2009, 114(4): 2481-2487.
doi: 10.1002/app.v114:4 |
[11] |
PLUTA M, PAUL M A, ALEXANDRE M, et al. Plasticized polylactide/clay nanocomposites:I:the role of filler content and its surface organo-modification on the physicchemical properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(2): 299-311.
doi: 10.1002/(ISSN)1099-0488 |
[12] |
ANGIN N, CAYLAK S, ERTAS M, et al. Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites[J]. Sustainable Materials and Technologies, 2022. DOI:10.1016/j.susmat.2021.e00386.
doi: 10.1016/j.susmat.2021.e00386 |
[13] |
SUKTHAVORN K, NOOTSUWAN N, WUTTISARN R, et al. Golden glittering biocomposite fibers from poly (lactic acid) and nanosilver-coated titanium dioxide with unique properties; antimicrobial, photocatalytic, and ion-sensing properties[J]. ACS Omega, 2021, 6(25): 16307-16315.
doi: 10.1021/acsomega.1c00657 |
[14] | FARHOODI M, DADASHI S, MOUSAVI S M A, et al. Influence of TiO2 nanoparticle filler on the properties of PET and PLA nanocomposites[J]. Polymer, 2012, 36(6): 745-755. |
[15] |
Al-ITRY R, LAMNAWAR K, MAAZOUZ A, et al. Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state[J]. European Polymer Journal, 2015, 68: 288-301.
doi: 10.1016/j.eurpolymj.2015.05.001 |
[16] |
XU Y, QIU Y, YAN C, et al. A novel and multifunctional flame retardant nucleating agent towards superior fire safety and crystallization properties for biodegradable poly(lactic acid)[J]. Advanced Powder Technology, 2021, 32(11): 4210-4221.
doi: 10.1016/j.apt.2021.09.026 |
[17] |
CLARKSON C M, AZRAK S M E A, CHOWDHURY R, et al. Melt spinning of cellulose nanofibril/polylactic acid (CNF/PLA) composite fibers for high stiffness[J]. ACS Applied Polymer Materials, 2018, 1(2): 160-168.
doi: 10.1021/acsapm.8b00030 |
[18] | MAEDA S. Spirooxazines[M]// Organic Photochromic and Thermochromic Compounds. Boston:Springer, 2002: 85-109. |
[1] | 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131. |
[2] | 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174. |
[3] | 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167. |
[4] | 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53. |
[5] | 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54. |
[6] | 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48. |
[7] | 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95. |
[8] | 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43. |
[9] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[10] | 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41. |
[11] | 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87. |
[12] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
[13] | 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142. |
[14] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
[15] | 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47. |
|