纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 72-78.doi: 10.13475/j.fzxb.20211101201

• 纺织工程 • 上一篇    下一篇

仿猪笼草口缘结构功能针织物的设计与应用

俞旭良, 丛洪莲(), 孙菲, 董智佳   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2021-11-02 修回日期:2022-03-12 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 丛洪莲(1976—),女,教授,博士。主要研究方向为针织工艺技术。E-mail: cong-wkrc@163.com
  • 作者简介:俞旭良(1995—),男,硕士。主要研究方向为功能运动针织物的设计。
  • 基金资助:
    国家自然科学基金项目(61902150);国家自然科学基金项目(61772238);泰山产业领军人才项目(tscy20180224)

Design and application of functional knitted fabric imitating nepenthe mouth structure

YU Xuliang, CONG Honglian(), SUN Fei, DONG Zhijia   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-11-02 Revised:2022-03-12 Published:2023-07-15 Online:2023-08-10

摘要:

为实现水分在织物表面的快速传导以改善服装的热湿舒适性能,仿生猪笼草口缘区表面上的液体单方向连续搬运机制设计功能织物。通过对猪笼草口缘区的3层微沟槽结构进行研究,在双面圆机上采用单面平针组织与双罗纹组织设计与仿生结构形态一致的织物并建立等大的结构模型,通过将织物结构的测量参数导入ANSYS软件进行流体有限元分析,模拟汗液在织物表面的运动场景,同时对仿生结构织物进行芯吸高度、液态水分管理测试实验。结果表明:该模型可提升约43%的水流传递速度,实验结果与模拟效果较为相似,仿生结构织物具有优异的水分传递功能,可应用于导水鞋面等领域,为功能针织物的设计与开发提供一定参考。

关键词: 猪笼草, 口缘结构, 水分传递, 微沟槽结构, 有限元模拟, 导水鞋面, 仿生织物, 针织物

Abstract:

Objective Studies show that moisture transferring fabric plays an important role in achieving the balance of heat and humidity of the whole garment. Sweat can be quickly conducted in the moisture transferring fabric, which help concentrate or drive sweat to the designated area, thus strengthening the ability of clothing to control sweat. In order to achieve the rapid conduction of moisture on the surface of fabric and improve the thermal and moisture comfort of clothing, an effort was made to combine the biological system with textiles in a multidisciplinary way to form a more characteristic biomimetic structure fabric. By referring to the liquid single-direction continuous transport mechanism on the surface of the nepenthe plant mouth edge area, a biomimetic structure fabric with a single-side moisture transfer function was designed aiming to optimize the structure design of fabric and the principle of moisture conduction.

Method By studying the three-layer micro-groove structure in the mouth edge area, it was found that the "duck-bill" pit with gradient wedge angle characteristics was the key to the liquid directional transport movement of nepenthe plants. The gradient wedge angle produced gradient tailor ascending effect in the micro-groove, which promoted the liquid climbing transport movement. Therefore, SM-DJ-2TS double-sided electronic circular knitting machine was adopted to produce a fabric with 18 stitches/(25.4 mm) and 912 stitches using single-sided and double-sided structure, and the 150 dtex(24 f) polyester low-elastic yarn and the 20/50 blending ratio of spandex/polyamide coated yarn were selected as raw materials. The structure fabric with the same shape as the bionic structure was designed to form the concave and convex fabric with the "duck bill" arch structure. Meanwhile, the structure model of the same shape was established, and the fluid finite element analysis was carried out with ANSYS software to simulate the movement scene of sweat on the surface of the structure fabric.

Results Simulation analysis showed that more water flow through the surface structure of the model would lead to faster flow velocity. The channel structure model would increase the flow velocity by about 43%, suggesting that the structure model was able to transport water and enhance the liquid wicking. Meanwhile, the experimental test of the wicking height showed that the bionic structure pit channel can enhance the core absorption effect of reagents. At 600 s of the experiment, the difference between the bionic structure fabric and the plain fabric was more obvious. The experimental results of bionic fabric wicking height test validated the simulation results. Besides, its surface diffusion area and diffusion speed also showed unique advantages. The liquid further diffused along the direction of the arch pit in the channel on the groove structure. Finally, the wetting and diffusion effect on the bionic structure fabric was irregular, but it was obviously different from plain fabric. On the plain fabric, the reagent diffused around the dripping point as the center, and finally formed a circular or oval wetting diffusion area. This indicates that the moisture can be diffused more rapidly in the pit channel of the bionic fabric structure, and the longer distance transmission showed the rapid and efficient one-way water transfer function effect.

Conclusion The design and development of moisture transferring fabric with structure at the edge of nepenthe plants can satisfy the application needs of functional products such as water guiding vamps, moisture controlling sports clothes and moisture conducting socks, which can optimize the moisture transferring of fabric and improve the comfort of heat and humidity of clothing, providing certain references for the design and development of moisture transferring fabric.

Key words: nepenthe, mouth structure, moisture transferring, micro groove structure, finite element analysis, water guide shoe upper, bionic fabric, knitted fabric

中图分类号: 

  • TS186.2

图1

猪笼草表面的液体单向连续搬运过程"

图2

猪笼草微观形貌"

图3

凹坑结构织物设计"

图4

仿生针织功能织物结构参数"

图5

仿生针织功能织物结构模型"

图6

仿生针织功能织物表面汗液流动流线图"

表1

2种试样在不同时间时的芯吸高度"

试样编号 芯吸高度/cm
0 min 5 min 10 min
F试样 5.31 13.02 17.01
W试样 3.89 9.79 11.83

图7

水分扩散测试结果"

图8

功能针织织物的应用"

[1] 周艳卫. 基于仿生学的针织面料结构开发及其热湿舒适性能研究[D]. 上海: 东华大学, 2010: 1-7.
ZHOU Yanwei. Development of knitted fabric structure based on bionics and study on its thermal and wet comfort properties[D]. Shanghai: Donghua University, 2010: 1-7.
[2] 万晶, 徐丽慧, 潘虹. 基于SiO2-TiO2复合气凝胶制备超疏水光催化自清洁棉织物[J]. 印染, 2021, 47(6): 19-24.
WAN Jing, XU Lihui, PAN Hong. Preparation of super hydrophobic photocatalytic self-cleaning cotton fabric based on SiO2-titanium dioxide composite aerogel[J]. China Dyeing & Finishing, 2021, 47(6): 19-24.
[3] LI P, ZHANG B, ZHAO H, et al. Unidirectional droplet transport on the biofabricated butterfly wing[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2018, 34(41): 12482-12487.
doi: 10.1021/acs.langmuir.8b02550
[4] JU J, BAI H, ZHENG Y. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3(1): 1-6.
[5] LABONTE D, ROBINSON A, BAUER U, et al. Disentangling the role of surface topography and intrinsic wettability in the prey capture mechanism of nepenthes pitcher plants[J]. Acta Biomaterialia, 2021, 119: 225-233.
doi: 10.1016/j.actbio.2020.11.005 pmid: 33189952
[6] LIU J, OUYANG Y, QIU R, et al. Compositing fluid infused in super hydrophobic Cu(OH)2 nano-needle matrix to inhibit abiotic and micro biologically induced corrosion of Cu in seawater environment[J]. Progress in Organic Coatings: An International Review Journal, 2020. DOI: 10.1016/j.porgcoat.2020.105542.
doi: 10.1016/j.porgcoat.2020.105542
[7] 刘光, 张鹏飞, 陈华伟. 载能电刀仿生防粘表面技术[J]. 机械工程学报, 2008, 54(17): 21-27.
LIU Guang, ZHANG Pengfei, CHEN Huawei. Biomimetic anti-stick surface technology of energy-carrying electric knife[J]. Journal of Mechanical Engineering, 2008, 54(17): 21-27.
[8] 胡海豹, 曹刚, 张梦卓. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193.
HU Haibao, CAO Gang, ZHANG Mengzhuo. Progress in directional movement of liquid droplets on solid surfaces[J]. Materials Reports, 2020, 34(13): 13175-13193.
[9] 乔燕芳, 王利强. 定向防粘附润滑涂层制备及其性能[J]. 精细化工, 2019, 36(10): 2023-2027, 2051.
QIAO Yanfang, WANG Liqiang. Preparation and properties of directional anti-adhesive lubrication coating[J]. Fine Chemicals, 2019, 36(10): 2023-2027, 2051.
[10] 王立新, 吴树静, 李山山. 工程仿生领域猪笼草叶笼研究现状及发展趋势[J]. 河北科技大学学报, 2018, 39(3): 221-231.
WANG Lixin, WU Shujing, LI Shanshan. Research status and development trend of pitcher grass cage in the field of engineering bionics[J]. Journal of Hebei University of Science and Technology, 2018, 39(3): 221-231.
[11] 王树涛. 猪笼草口缘超湿滑的揭密: Jiang-Taylor毛细升与液体定向输运[J]. 化学进展, 2017, 29(1): 3-4.
doi: 10.7536/PC161236
WANG Shutao. Uncovering the super-wet and slippery edges of the pitcher grass: Jiang-Taylor capillary lifting and directed transport of liquids[J]. Progress in Chemistry, 2017, 29(1): 3-4.
doi: 10.7536/PC161236
[12] 陈华伟, 张鹏飞, 张力文. 猪笼草口缘区表面液体单方向连续搬运机制[J]. 中国科学基金, 2016, 30(3): 217-219.
CHEN Huawei, ZHANG Pengfei, ZHANG Liwen. Unidirectional continuous transport mechanism of liquid on pork cage grass mouth edge[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 217-219.
[13] 李储鑫. 仿生猪笼草结构调控的液体定向输运的研究[D]. 北京: 中国科学院大学, 2019: 6-13.
LI Chuxin. Study on directed transport of liquid controlled by structure of biomimetic pitcher grass[D]. Beijing: University of Chinese Academy of Sciences, 2019:6-13.
[14] 李龙阳. 仿生沟槽及超疏水表面减阻设计研究[D]. 太原: 中北大学, 2015: 2-14.
LI Longyang. Study on drag reduction design of biomimetic grooves and superhydrophobic surfaces[D]. Taiyuan: North University of China, 2015: 2-14.
[15] SUSAN Daniel, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633-636.
pmid: 11158672
[16] HIGUERA F J, MEDINA A, LINAN A. Capillary rise of a liquid between two vertical plates making a small angle[J]. Physics of Fluids, 2008.DOI:10.1063/1.3000425.
doi: 10.1063/1.3000425
[17] 高香玉. 液体在微结构表面的定向润湿行为研究[D]. 北京: 北京化工大学, 2017: 4-19.
GAO Xiangyu. Study on directional wetting behavior of liquid on micro-structure surface[D]. Beijing: Beijing University of Chemical Technology, 2017: 4-19.
[18] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophobic micronanofibers/cotton fiber core-spun fabrics[J]. Journal of Donghua University (Natural Science), 2020, 46 (5): 694-702.
[19] 张泽军. 全成型3D针织鞋面鞋口编织方法[J]. 纺织科技进展, 2018(6): 4-8.
ZHANG Zejun. Full-formed 3D knitted shoe upper and shoe opening braiding method[J]. Progress in Textile Science & Technology, 2018(6): 4-8.
[1] 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94.
[2] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
[3] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[4] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[5] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[6] 王玥, 王春红, 徐磊, 刘胜凯, 鹿超, 王利剑, 杨璐, 左祺. 三维导湿结构环保针织面料开发与吸湿速干性能评价[J]. 纺织学报, 2022, 43(10): 58-64.
[7] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[8] 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66.
[9] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[10] 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69.
[11] 刘雪艳, 蒋高明. 基于ABAQUS的运动压力袜编织尺寸预测[J]. 纺织学报, 2022, 43(06): 79-85.
[12] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[13] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[14] 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69.
[15] 袁鲁宁, 王建萍, 张冰洁, 张宇婷, 姚晓凤. 动态调湿控温立体针织物拓扑优化设计[J]. 纺织学报, 2021, 42(09): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!