纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 1-8.doi: 10.13475/j.fzxb.20220308201

• 纤维材料 •    下一篇

服用聚苯硫醚纤维的制备及其性能

连丹丹1,2, 王镭1, 杨雅茹3, 尹立新2, 葛超1, 卢建军1()   

  1. 1.太原理工大学 轻纺工程学院, 山西 晋中 030600
    2.江苏恒力化纤股份有限公司, 江苏 苏州 215226
    3.嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
  • 收稿日期:2022-03-24 修回日期:2022-06-29 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 卢建军(1970—),男,教授,博士。主要研究方向为产业用高性能纤维。E-mail:lujianjun@tyut.edu.cn
  • 作者简介:连丹丹(1987—),男,讲师,博士。主要研究方向为高性能纤维的多功能化。
  • 基金资助:
    国家自然科学基金青年基金项目(51903184);中国博士后科学基金资助项目(2021M701129)

Preparation and properties of polyphenylene sulfide composite fiber for clothing

LIAN Dandan1,2, WANG Lei1, YANG Yaru3, YIN Lixin2, GE Chao1, LU Jianjun1()   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    2. Jiangsu Hengli Chemical Fiber Co., Ltd., Suzhou, Jiangsu 215226, China
    3. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2022-03-24 Revised:2022-06-29 Published:2023-08-15 Online:2023-09-21

摘要:

为提高聚苯硫醚(PPS)纤维的吸湿性能、染色性能和抗紫外线性能,利用双螺杆挤出机和熔融纺丝机将聚丙烯酸钠(PAAS)和纳米TiO2与PPS共混制备复合纤维,并对PPS/PAAS/TiO2复合纤维的结构、性能进行了分析。结果表明:PAAS和纳米TiO2在PPS基体中的分散相容良好,纳米TiO2可提高PPS的结晶度,而PAAS会降低PPS的结晶度;当PAAS质量分数为2%时,复合纤维的综合性能最优,断裂强度为3.06 cN/dtex,断裂伸长率为30.4%,水接触角达52.1°,标准回潮率提高到3.5%,上染率为90.9%,耐皂洗色牢度达到5级,耐光照色牢度达到7级,50 ℃加速紫外光老化120 h后强度保持率在85%以上。PAAS和纳米TiO2附带的功能基团和在PPS基体中形成的多级网络结构提高了复合纤维吸湿性、染色性能和抗紫外线性能。

关键词: 聚苯硫醚纤维, 服用改性, 吸湿性能, 染色性能, 抗紫外线性能, 聚丙烯酸钠, 二氧化钛

Abstract:

Objective Special protective clothing are used against high temperature, acid and alkali corrosion, fire and other special environments, and high-performance fibers are essential for special protective clothing. Polyphenylene sulfide (PPS) fiber is a high-performance fiber with excellent mechanical properties, chemical resistance, self-flame retardancy and insulation and other outstanding properties, and it is a suitable raw material for special protective clothing. However, the poor moisture absorption, dyeing performance and light resistance of PPS fiber, limit the applications in apparel.

Method PPS fibers were modified with sodium polyacrylate (PAAS) and nano-TiO2 to obtain PPS/PAAS/TiO2 composite fibers with better hygroscopic property, dyeing performance and UV resistance. The PPS/PAAS/TiO2 composite masterbatches were prepared by melt blending the vacuum-dried PPS with PAAS and nano-TiO2 using a twin-screw extruder before these composite masterbatches were vacuum dried at 130 ℃ for 13 h. The composite fibers were prepared by a one-step spinning and drawing process using melt spinning. The spinning speed was 800 m/min, the pump supply was 22 g/min, and two-zone drafting was used, with the temperature of each drafting hot plate setting at 88, 102 and 108 ℃, and the drafting multiplier was 3.2. The mechanical properties, moisture absorption properties, dyeing rate, color fastness, and ultraviolet(UV) resistance of the prepared fibers were characterized.

Results PAAS and nano-TiO2 were able to disperse uniformly in the polyphenylene sulfide (PPS) fiber matrix and form a good cross-compatibility (Fig.2), but when the mass fraction of PAAS exceeded 3%, agglomeration appeared and the poor dispersion led to poor spinnability of PPS composite fibers (Tab. 1). The use of Nano-TiO2 improved the crystallinity of PPS fibers, while PAAS made the glass transition temperature and crystallinity of composite fibers decrease (Fig. 3 and Tab. 2). Increasing the internal free volume and amorphous zone of fibers resulted in a slight decrease in the breaking strength of PPS fibers compared with pure PPS fibers, but the elongation at break increases (Fig. 4). When the mass fraction of PAAS was 2%, the breaking strength of PPS/PAAS/TiO2 composite fiber reached 3.06 cN/dtex and the elongation at break 30.4%, indicating the mechanical properties meeting the requirements of fabrics for apparel. The moisture absorption performance and dyeing performance of the PPS/PAAS/TiO2 composite fiber was improved, the water contact angle decreased with the increase of PAAS content from 73.7° for the pure PPS fiber to 51.2° for the PPS-5 composite fiber (Fig. 5). The standard moisture regain rate increased with the increase of PAAS content from 0.22% for the pure PPS fiber to 3.9% for the PPS-5 composite fiber (Fig. 6). Under the same dyeing conditions, the dyeing rate of PPS-4 composite fiber (90.9%) was twice as high as that of the pure PPS fiber (44.8%) (Fig. 7). The color fastness of PPS/PAAS/TiO2 composite fiber all reached levels 5 and 5 for soaping resistance (Tab. 3), and 6 and 7 for light fastness. The resistance of PPS composite fibers to light aging was significantly improved by addition of nano-TiO2, and the strength remained at more than 85% after 120 h, although there was also strength loss with time (Fig. 8).

Conclusion The hygroscopic property, dyeing performance and UV resistant of PPS/PAAS/TiO2 composite fibers are all enhanced to a certain extent, partly because of the functional groups of PAAS and nano-TiO2, and partly because of the formation of a good spatial cross-linked network structure with the PPS matrix (Fig. 9). PAAS itself has a long molecular chain entanglement cross-linked structure. There are many reactive —COONa, —COOH groups inside the network, which have super hygroscopic ability. It is proved that nano TiO2 plays a role in preventing UV aging by absorbing and reflecting ultraviolet light and the scattering and shielding ultraviolet light. Water molecules and dyestuffs that penetrate and diffuse into the interior of PPS fibers produce certain hydrogen bonding with the functional groups, resulting in improved moisture regain and color fastness of the fibers. On the basis of maintaining the original properties of PPS fibers, improved moisture absorption, dyeing and UV resistant properties make it a prospective candidate fibre for apparel applications. For further development, it is necessary to focus on the deterioration of the spinnability and mechanical properties of PPS fibers that occur after the PAAS content is increased.

Key words: polyphenylene sulfide fiber, modification for clothing, hygroscopic property, dyeing property, UV resistant, sodium polyacrylate, TiO2

中图分类号: 

  • TS102.5

表1

PPS/PAAS/TiO2复合纤维各组分的质量分数"

复合纤维
编号
质量分数/% 可纺性
PPS PAAS TiO2
PPS-0 100 0 0
PPS-1 99.0 0 1.0
PPS-2 99.5 0.5 0
PPS-3 98.0 1.0 1.0
PPS-4 97.0 2.0 1.0
PPS-5 96.0 3.0 1.0 少量断头
PPS-6 94.0 5.0 1.0 差,舍弃

图1

PPS/PAAS/TiO2复合纤维的染色工艺路线"

图2

PPS-4和PPS-5复合纤维的SEM照片及EDS面扫元素图"

图3

PPS复合纤维的DSC曲线"

表2

PPS复合纤维的DSC数据"

复合纤
维编号
Tg/
ΔHcc/
(J·g-1)
Tm/
ΔHm/
(J·g-1)
Tc/
ΔTc/
Xc/
%
PPS-0 91.45 8.05 282.23 48.29 206.46 75.77 50.30
PPS-1 92.78 10.08 282.46 51.99 225.59 56.87 52.39
PPS-2 90.58 12.92 282.12 52.13 219.89 62.23 49.01
PPS-3 89.79 11.08 282.55 48.99 217.87 64.68 47.39
PPS-4 89.12 11.96 283.19 47.92 214.23 68.96 44.95
PPS-5 88.31 11.95 282.38 46.12 209.65 72.73 42.71

图4

PAAS及纳米TiO2用量对PPS纤维力学性能的影响"

图5

PPS/PAAS/TiO2复合纤维的水接触角"

图6

PPS/PAAS/TiO2复合纤维的标准回潮率"

图7

染色温度对PPS/PAAS/TiO2复合纤维上染率的影响"

表3

PPS复合纤维的染色牢度评级"

复合纤
维编号
耐皂洗色牢度/级 光照色
牢度/级
变色 沾色(涤纶)
PPS-0 4 4 6
PPS-1 4 4~5 6~7
PPS-2 4~5 4~5 6~7
PPS-3 5 5 7
PPS-4 5 5 7
PPS-5 5 5 7

图8

PPS复合纤维经不同时间紫外光老化后断裂强度保持率"

图9

PPS复合纤维吸湿性、染色性和抗紫外机制示意图"

[1] 李利君, 蒲宗耀, 李风, 等. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4-8.
LI Lijun, PU Zongyao, LI Feng, et al. Thermal degradation kinetics of polyphenylene sulfide fibers[J]. Journal of Textile Research, 2010, 31(12): 4-8.
[2] GE Feifan, WAN Neng, TSOU Chihui, et al. Thermal properties and hydrophilicity of antibacterial poly(phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes[J]. Journal of Polymer Research, 2022. DOI:10.1007/s10965-022-02931-9.
doi: 10.1007/s10965-022-02931-9
[3] LIAN Dandan, DAI Jinming, ZHANG Ruiping, et al. Enhancing the resistance against oxidation of polyphenylene sulphide fiber via incorporation of nano TiO2-SiO2 and its mechanistic analysis[J]. Polymer Degradation and Stability, 2016, 129: 77-86.
doi: 10.1016/j.polymdegradstab.2016.04.004
[4] WOJCIECH Czerwiński. Electronic processes in poly(p-henylene) and related compounds: Ⅱ: structure and electrical properties of polymers related to poly(p-henylene sulfide)[J]. Die Angewandte Makromolekulare Chemie, 2003, 144(1): 101-112.
doi: 10.1002/apmc.1986.051440108
[5] EVAIAH R G, KOTRESH T M, KANDASUBRAMANIAN B. Technical textiles for military applications[J]. Journal of The Textile Institute, 2019(3):1-36.
[6] LIU Shuai, LIIU Zheng, BAI Xie. Comparative analysis of fibers for thermal protective clothing[J]. Advanced Materials Research, 2013, 627:29-32.
doi: 10.4028/www.scientific.net/AMR.627
[7] 李颖娜, 孙元, 邓新华, 等. 聚苯硫醚接枝聚丙烯酸的研究[J]. 天津工业大学学报, 2006, 25(2): 52-54.
LI Yingna, SUN Yuan, DENG Xinhua, et al. Research on graft polymerization of acrylic acid onto polyphenylene sulfide[J]. Journal of Tianjin Polytechnic University, 2006, 25(2):52-54.
[8] 徐志成, 张伟政, 等.王乐译, 氯磺酸磺化PPS非织毡薄膜及表征[J]. 膜科学与技术, 2016, 36(5): 68-71.
XU Zhicheng, WANG Leyi, ZHANG Weizheng, et al. Sulphuration of PPS non-woven felt thin film by chlorosulfonic acid and characterization[J]. Membrane Science and Technology, 2016, 36(5): 68-71.
[9] 申霄晓, 张蕊萍, 连丹丹, 等. 吸湿性 PPS 共混母粒的制备及性能研究[J]. 合成纤维工业, 2013, 36(5):12-15.
SHEN Xiaoxiao, ZHANG Ruiping, LIAN Dandan, et al. Preparation and properties of hygroscopic PPS blend masterbatch[J]. China Synthetic Fiber Industry, 2013, 36(5):12-15.
[10] 胡泽旭, 陈姿晔, 相恒学, 等. 石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J]. 纺织学报, 2017, 38(11): 1-8.
HU Zexu, CHEN Ziye, XIANG Hengxue, et al. Light-stability and enhancement mechanism of polyphenylene sulfide fiber modified by graphene[J]. Journal of Textile Research, 2017, 38(11): 1-8.
doi: 10.1177/004051756803800101
[11] 任靖屹. 吸湿易染抗紫外聚苯硫醚纤维的制备及其性能研究[D]. 太原: 太原理工大学, 2020:11-13.
REN Jingyi. Preparation and properties of hygroscopic, dyeable and UV resistant polyphenylene sulfide fibers[D]. Taiyuan: Taiyuan University of Technology, 2020: 11-13.
[12] DENG Shuling, LIN Zhidan, XU Baofeng, et al. Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118: 197-203.
doi: 10.1007/s10973-014-3958-1
[13] 刘振海, 山立子, 陈学思. 聚合物量热测定[M]. 北京: 化学工业出版社, 2002: 143-167.
LIU Zhenhai, SHAN Lizi, CHEN Xuesi. Polymer calorimetry[M]. Beijing: Chemical Industry Press, 2002: 143-167.
[14] 郑邦乾, 张洁辉, 蒋序林. 高吸水性树脂与PVC共混的研究[J]. 塑料工业, 1992(5): 35-39.
ZHENG Bangqian, ZHANG Jiehui, JIANG Xulin. A study of the blending of super water-absorbing resin with PVC[J]. China Plastics Industry, 1992(5): 35-39.
[15] HU Zexu, LI Lili, SUN Bin, et al. Effect of TiO2@SiO2nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers[J]. Progress in Natural Science, 2015, 25: 310-315.
doi: 10.1016/j.pnsc.2015.08.004
[16] LIAN Dandan, REN Jingyi, HAN Wenxin, et al. Kinetics and evolved gas analysis of the thermo-oxidative decomposition for neat PPS fiber and nano Ti-SiO2 modified PPS fiber[J]. Journal of Molecular Structure, 2019, 1196: 734-746.
doi: 10.1016/j.molstruc.2019.07.023
[17] BESSEM Kordoghli, RAMZI Khiari, MOHAMED Farouk Mhenn, et al. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation[J]. Applied Surface Science, 2012, 258(24): 9737-9741.
doi: 10.1016/j.apsusc.2012.06.021
[18] 张蕊萍, 相鹏伟, 郭健, 等. 徐冷温度对聚苯硫醚纤维结构与性能的影响[J]. 纺织学报, 2013, 34(8): 17-21.
ZHANG Ruiping, XIANG Pengwei, GUO Jian, et al. Effect of slow cooling temperature on structure and properties of PPS fibers[J]. Journal of Textile Research, 2013, 34(8): 17-21.
[19] MAGORZATA P Oksińska, ELBIETA G Magnucka, KRZYSZTOF Lejcu, et al. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria[J]. Environmental Science & Pollution Research, 2016, 23(6): 1-9.
[20] FUMINORI Ito, YURIKO Nishiyama, DUAN Shuhong, et al. Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa)[J]. Journal of Polymer Research, 2019, 26(5): 2-9.
doi: 10.1007/s10965-018-1664-6
[21] SUGAMA Toshifumi. Antioxidants for retarding hydrothermal oxidation of polyphenylenesulfide coatings in geothermal environments[J]. Materials Letters, 2000, 43: 185-191.
doi: 10.1016/S0167-577X(99)00257-8
[22] WEI Dongya, HE Ning, ZHAO Jing, et al. Mechanical, water-Sswelling, and morphological properties of water-swellable thermoplastic vulcanizates based on high density polyethylene/chlorinated polyethylene/nitrile butadiene rubber/cross-linked sodium polyacrylate blends[J]. Polymer Plastics Technology & Engineering, 2015, 54(6): 616-624.
[1] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[2] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[3] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[4] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[5] 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229.
[6] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[7] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[8] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[9] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[10] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[11] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[12] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[13] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
[14] 周天博, 郑环达, 蔡涛, 于佐君, 王力成, 郑来久. 活性分散黄染料对涤纶/棉混纺织物的超临界CO2同浴染色[J]. 纺织学报, 2022, 43(03): 116-122.
[15] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!