纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 110-117.doi: 10.13475/j.fzxb.20220400301
ZHAO Wenhao, XIANG Jun, ZHANG Ning, PAN Ruru()
摘要:
为解决纺织面料图案检索算法检索效率低下、精度低等问题,提出一种基于SURF和VLAD特征编码的纺织面料图案检索算法。首先构建带有图案的面料数据库,并提取图像的SURF特征以对图像内容进行表达;接着对采集的原始面料进行聚类生成视觉词典,由生成的视觉词典对数据库中面料图像的SURF特征进行VLAD特征编码,以聚合生成VLAD向量;然后在保证VLAD对图像表达能力的前提下,对生成的VLAD向量进行主成分分析以降低向量维度,提高检索效率;最后采用Ball-tree算法构建索引,加快匹配速度,提高检索效率。实验结果显示,在视觉词典规模为512,保留维度数为512时,算法平均检索精度达到了83.5%,平均检索时间为0.488 s。
中图分类号:
[1] |
SZTANDERA L M, CARDELLO A V, WINTERHALTER C, et al. Identification of the most signifycant comfort factors for textiles from processing mechanical, handfeel, fabric construction, and perceived tactile comfort data[J]. Textile Research Journal, 2012, 83(1): 34-43.
doi: 10.1177/0040517512438121 |
[2] |
XIANG J, ZHANG N, PAN R, et al. Fabric image retrieval system using hierarchical search based on deep convolutional neural network[J]. IEEE Access, 2019, 7: 35405-35417.
doi: 10.1109/Access.6287639 |
[3] | 张宁. 基于特征工程的机织面料图像检索方法研究[D]. 无锡: 江南大学, 2021:1-50. |
ZHANG Ning. Research on image retrieval method of woven fabric based on Feature Engineering[D]. Wuxi: Jiangnan University, 2021:1-50. | |
[4] | 康锋, 胡洁, 张华熊, 等. 基于最大稳定极值区域的织物图案检索[J]. 纺织学报, 2015, 36(10): 156-160. |
KANG Feng, HU Jie, ZHANG Huaxiong, et al. Fabric pattern retrieval based on maximum stable extremum region[J]. Journal of Textile Research, 2015, 36(10): 156-160. | |
[5] | 向忠, 何旋, 钱淼, 等. 基于边缘和颜色特征的织物印花花型检索[J]. 纺织学报, 2018, 39(5): 137-143. |
XIANG Zhong, HE Xuan, QIAN Miao, et al. Fabric printing pattern retrieval based on edge and color features[J]. Journal of Textile Research, 2018, 39(5): 137-143. | |
[6] | 曹霞, 李岳阳, 罗海驰, 等. 蕾丝花边的改进型纹理特征检索方法[J]. 纺织学报, 2016, 37(6): 142-147,154. |
CAO Xia, LI Yueyang, LUO Haichi, et al. Improved texture feature retrieval method for lace[J]. Journal of Textile Research, 2016, 37(6): 142-147,154. | |
[7] | 刘颖, 倪天宇, 王富平, 等. 融合局部聚合描述符和全局特征的现勘图像分类算法[J]. 科学技术与工程, 2020, 20(3): 1118-1124. |
LIU Ying, NI Tianyu, WANG Fuping, et al. An image classification algorithm based on local aggregation descriptors and global features[J]. Science Technology and Engineering, 2020, 20(3): 1118-1124. | |
[8] | 江南大学. 基于SURF和VLAD特征编码的面料图案检索算法: CN202210889749. 0[P]. 2022-11-01. |
Jiangnan University. Fabric pattern retrieval algorithm based on SURF and VLAD feature coding: CN202210889749. 0[P]. 2022-11-01. | |
[9] |
BAY H, TUYTELAARS T, LUC Van Gool. SURF: speeded up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
doi: 10.1016/j.cviu.2007.09.014 |
[10] | 修瑛昌, 杨文静. Mini Batch K-means算法在遥感影像分类中的应用[J]. 鲁东大学学报(自然科学版), 2017, 33(4): 359-363. |
XIU Yingcang, YANG Wenjing. Application of mini batch k-means algorithm in remote sensing image classification[J]. Journal of Ludong University, 2017, 33(4): 359-363. | |
[11] | JÉGOU H, DOUZE M, SCHMID C, et al. Aggregating local descriptors into a compact image representa-tion[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CA:IEEE. 2010: 3304-3311. |
[12] | RETONDARO L C d S C, ESPERANÇA C. Optimized 2D Ball Trees[J]. Computer Science, 2021. 10.1109/sibgrapi54419.2021.00014. |
[13] | 房梦玉, 马明栋. 改进的PCA-LDA人脸识别算法的研究[J]. 计算机技术与发展, 2021, 31(2): 65-69. |
FANG Mengyu, MA Mingdong. Research on improved PCA-LDA face recognition algorithm[J]. Computer technology and development, 2021, 31 (2): 65-69. | |
[14] | AHSANI A F, SARI Y A, ADIKARA P P. Food image retrieval with gray level co-occurrence matrix texture feature and CIE L*a*b* color moments feature[C]//2019 International Conference on Sustainable Information Engineering and Technology (SIET). Malang:IEEE, 2019: 130-134. |
[15] |
YUE J, LI Z, LIU L, et al. Content-based image retrieval using color and texture fused features[J]. Mathematical and Computer Modeling, 2011, 54: 1121-1127.
doi: 10.1016/j.mcm.2010.11.044 |
[1] | 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127. |
[2] | 万莉, 贡丽英, 贾敏瑞. 基于主成分分析的智能复合材料结构损伤类型识别[J]. 纺织学报, 2019, 40(05): 53-58. |
[3] | 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24. |
[4] | 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91. |
[5] | 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74. |
[6] | 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127. |
[7] | 王玲 杨以雄 陈炜. 服装工序相似性标准工时预测[J]. 纺织学报, 2016, 37(11): 114-119. |
[8] | 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21. |
[9] | 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61. |
[10] | 夏明 王文玲 张文斌. 人体特征断面形状拟合及围度尺寸预测[J]. 纺织学报, 2014, 35(8): 76-0. |
[11] | 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0. |
[12] | 耿艳蕾;崔运花;程隆棣;黄淑韵. 不同结构竹浆纤维纱线性能测试及分类[J]. 纺织学报, 2010, 31(4): 35-38. |
[13] | 刘贵;于伟东.. 主成分分析的BP神经网络在精毛纺粗纱工序中的应用[J]. 纺织学报, 2008, 29(9): 34-37. |
[14] | 徐松杰. 基于主成分分析法的纺织企业技术改造效果评价[J]. 纺织学报, 2008, 29(7): 128-131. |
[15] | 李艳梅.;张渭源. 基于灰色模型的服装面料缝纫皱缩预测[J]. 纺织学报, 2008, 29(6): 92-95. |
|