纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 143-150.doi: 10.13475/j.fzxb.20220605301
张杏1,2, 叶伟1,2,3, 龙啸云1,2, 曹海建1,2, 孙启龙1,2, 马岩1,2, 王征4()
ZHANG Xing1,2, YE Wei1,2,3, LONG Xiaoyun1,2, CAO Haijian1,2, SUN Qilong1,2, MA Yan1,2, WANG Zheng4()
摘要:
针对超高分子量聚乙烯(UHMWPE)纤维织物与热塑性聚氨酯(TPU)黏结性能差的问题,采用常压介质阻挡放电(DBD)等离子体对UHMWPE纤维织物进行表面处理及复合工艺的调整来提高复合材料界面黏结性能。研究了热压温度及时间和常压DBD等离子体处理电压及次数对纤维结构、纤维表面形貌及化学成分、丝束断裂强力及复合材料剥离强度的影响。结果表明:当热压温度为120 ℃,热压时间为30 s时,UHMWPE纤维织物与TPU的黏结性能达到最优,剥离强度达到了42.88 N/(25 mm);经过常压DBD 等离子体处理后,UHMWPE纤维表面产生明显的刻蚀痕迹,纤维表面含氧极性官能团增加,丝束力学性能及复合材料剥离强度随着处理电压和次数的增加先升高后降低,当处理电压为200 V,处理3次时,丝束断裂强力增加了1.8%,剥离强度提升了30. 72%。
中图分类号:
[1] |
MUDZI P, RONG W, FIROUZI D, et al. Use of patterned thermoplastic hot film to create flexible ballistic composite laminates from UHMWPE fabric[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.110403.
doi: 10.1016/j.matdes.2022.110403 |
[2] |
MWA B, LJA B, ZC B, et al. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2022.115663.
doi: 10.1016/j.compstruct.2022.115663 |
[3] |
PRASAD P R, PRAKASH J N, MANJUNATH L H, et al. Physical and wear properties of UHMWPE fabric reinforced epoxy composites[J]. International Journal of Automotive and Mechanical Engineering, 2020, 17(1): 7577-7586.
doi: 10.15282/ijame.17.1.2020.07.0562 |
[4] | 于海龙, 孙长征, 赵同峰. 新型大跨度索结构避难帐篷现场试验与数值模拟[J]. 工程抗震与加固改造, 2013, 35(2): 62-67. |
YU Hailong, SUN Changzheng, ZHAO Tongfeng. Field experiment and numerical simulation of long-span cable shelter tent[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(2):62-67. | |
[5] | 丁文瑶, 李静, 李建林. 高强度阻燃涤纶军用篷布的研制[J]. 棉纺织技术, 2018, 46(3): 42-45. |
DING Wenyao, LI Jing, LI Jianlin. Development of higher strength flame resistant polyester military tarpaulin[J]. Cotton Textile Technology, 2018, 46(3): 42-45. | |
[6] |
BERDAHL P, AKBARI H, LEVINSON R, et al. Weathering of roofing materials:an overview[J]. Construction and Building Materials, 2008, 22(4): 423-433.
doi: 10.1016/j.conbuildmat.2006.10.015 |
[7] | 徐晓伟. PVC涂层膜结构材料的光氧老化性能研究[D]. 上海: 东华大学, 2014: 35-42. |
XU Xiaowei. Study on the photo-oxidation of PVC-coated membrane material[D]. Shanghai: Donghua University, 2014:35-42. | |
[8] | 尤秀兰, 胡盼盼, 刘兆峰. 高强有机合成纤维的结构形成[J]. 纺织学报, 2010, 31(5): 146-152. |
YOU Xiulan, HU Panpan, LIU Zhaofeng. Structure of high strength organic synthetic fibers[J]. Journal of Textile Research, 2010, 31(5): 146-152. | |
[9] |
ARSHEEN M, RAJIV P, WANG X. Coating of TPU-PDMS-TMS on polycotton fabrics for versatile protec-tion[J]. Polymers, 2017, 9(12): 660-676.
doi: 10.3390/polym9120660 |
[10] | YOKOTA M, SHIMIZU A, KOMIYA K, et al. Thermoplastic polyurethane[J]. Encyclopedic Dictionary of Polymers, 1991, 16(3): 746-748. |
[11] |
LIN X X, HUANG X, WANG Y M. The effect of air cold plasma treatment on UHMWPE fiber surface modification[J]. Advanced Materials Research, 2014, 983: 280-283.
doi: 10.4028/www.scientific.net/AMR.983 |
[12] |
CAI T, ZHAN S, YANG T, et al. Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication[J]. Tribology International, 2022. DOI:10.1016/j.triboint.2021.107419.
doi: 10.1016/j.triboint.2021.107419 |
[13] | 唐久英, 陈成泅, 王守国. 低温等离子体对UHMWPE纤维的表面改性[J]. 合成纤维工业, 2007, 30(3): 39-40. |
TANG Jiuying, CHEN Chengqiu, WANG Shouguo. Surface modification of UHMWPE fiber via low-temperature plasma[J]. China Synthetic Fiber Industry, 2007, 30(3): 39-40. | |
[14] |
BYKKA, BABA, BMPA, et al. Melting and heat capacity of gel-spun, ultra-high molar mass polyethylene fibers[J]. Polymer, 2000, 41(16): 6237-49.
doi: 10.1016/S0032-3861(99)00839-3 |
[15] | 饶崛, 徐卫林. 热状态下UHMWPE纤维的力学性能[J]. 纺织学报, 2009, 30(1): 5-8. |
RAO Jue, XU Weilin. Mechanical properties of UHMWPE fiber under heating state[J]. Journal of Textile Research, 2009, 30(1): 5-8. | |
[16] | 饶崛, 徐卫林. 热处理后超高分子量聚乙烯纤维结构及力学性能[J]. 纺织科技进展, 2008(5): 9-11. |
RAO Jue, XU Weilin. Effect of heat treatment on the structure and mechanical properties of ultra-high-molecular-weight-polyethylene fiber[J]. Progress in Textile Science & Technology, 2008, (5): 9-11. | |
[17] | 展晓晴, 李凤艳, 赵健, 等. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(8): 9-14. |
ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, et al. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber[J]. Journal of Textile Research, 2020, 41(8): 9-14. | |
[18] | 李立民, 李文刚, 黄象安. 热处理对热塑性聚氨酯性能及微相分离影响的研究[J]. 聚氨酯工业, 2004, 19(1): 9-11. |
LI limin, LI Wengang, HUANG Xiangan. The studies of the effect of heat history on the properties and micro-phase separation of the thermoplastic polyurethane[J]. Polyurethane Industry, 2004, 19(1): 9-11. | |
[19] |
REN Y, DING Z, WANG C, et al. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties[J]. Applied Surface Science, 2016, 396(2): 1571-1579.
doi: 10.1016/j.apsusc.2016.11.215 |
[20] | 解林坤, 李树材. 氨低温等离子体处理低密度聚乙烯薄膜的XPS分析[J]. 塑料工业, 2010, 38(10):74-76. |
XIE Linkun, LI Shucai. XPS analysis of the LDPE Film modified by low temperature ammonia plasma[J]. China Plastics Industry, 2010, 38(10):74-76. | |
[21] |
HOFFMANN E A, KORTVELYESI T, WILUSZ E, et al. Relation between C1s XPS binding energy and calculated partial charge of carbon atoms in polymers[J]. Journal of Molecular Structure: Theochem, 2005, 725(1-3): 5-8.
doi: 10.1016/j.theochem.2005.02.021 |
[22] | 任煜, 张银, 王晓娜, 等. 空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及粘结力的影响研究[J]. 高分子学报, 2016(10): 1439-1446. |
REN Yu, ZHANG Yin, WANG Xiaona, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers[J]. Acta Polymerica Sinica, 2016(10): 1439-1446. | |
[23] | 孙雷, 蔡莹莹, 叶伟, 等. 介质阻挡放电对水龙带增强层黏结性能的影响[J]. 纺织学报, 2019, 40(3): 96-101. |
SUN lei, CAI Yingying, YE wei, et al. Influence of dielectric barrier discharge on adherent property of hose reinforcement layer[J]. Journal of Textile Research, 2019, 40(3): 96-101. | |
[24] | 刘明雪, 赵倩, 王晓辉, 等. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42 (3): 135-141. |
LIU Mingxue, ZHAO Qian, WANG Xiaohui, et al. Bonding fastness of magnetron sputtering nano-films with various textile substrates[J]. Journal of Textile Research, 2021, 42 (3): 135-141.
doi: 10.1177/004051757204200211 |
[1] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[2] | 王中昱, 王云仪, 王诗潭. 基于压力测评的帽子工效性能研究进展[J]. 纺织学报, 2023, 44(12): 242-250. |
[3] | 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231. |
[4] | 骆春旭, 龚浩然, 吴敏勇, 黄丛, 刘可帅. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11): 61-66. |
[5] | 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15. |
[6] | 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123. |
[7] | 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242. |
[8] | 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17. |
[9] | 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125. |
[10] | 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41. |
[11] | 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9. |
[12] | 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151. |
[13] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27. |
[14] | 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164. |
[15] | 段亚弟, 谢巍杰, 邱海鹏, 王晓猛, 王岭, 张典堂, 钱坤. 界面层对三维机织角联锁SiCf/SiC复合材料断裂韧性的影响[J]. 纺织学报, 2023, 44(01): 119-128. |
|