纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 143-150.doi: 10.13475/j.fzxb.20220605301

• 染整与化学品 • 上一篇    下一篇

超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能

张杏1,2, 叶伟1,2,3, 龙啸云1,2, 曹海建1,2, 孙启龙1,2, 马岩1,2, 王征4()   

  1. 1.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
    2.南通大学 纺织服装学院, 江苏 南通 226019
    3.扬州斯帕克实业有限公司, 江苏 扬州 225200
    4.军事科学院 国防工程研究院, 北京 100036
  • 收稿日期:2022-06-22 修回日期:2023-05-22 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 王征(1978—),男,高级工程师,硕士。主要研究方向为军事设施建筑设计及工程防护。E-mail:ygrzz@163.com
  • 作者简介:张杏(1984—),女,讲师,博士。主要研究方向为安全与防护用纺织品。
  • 基金资助:
    国家自然科学基金青年基金项目(52105153);江苏省自然科学基金面上项目(BK20221378)

Interfacial bonding properties of ultra-high molecular weight polyethylene fabric/thermoplastic polyurethane composites

ZHANG Xing1,2, YE Wei1,2,3, LONG Xiaoyun1,2, CAO Haijian1,2, SUN Qilong1,2, MA Yan1,2, WANG Zheng4()   

  1. 1. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
    2. College of Textiles and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    3. Yangzhou Sparkle Industrial Co., Ltd., Yangzhou, Jiangsu 225200, China
    4. Institute of Defense Engineering, AMS, Beijing 100036, China
  • Received:2022-06-22 Revised:2023-05-22 Published:2023-08-15 Online:2023-09-21

摘要:

针对超高分子量聚乙烯(UHMWPE)纤维织物与热塑性聚氨酯(TPU)黏结性能差的问题,采用常压介质阻挡放电(DBD)等离子体对UHMWPE纤维织物进行表面处理及复合工艺的调整来提高复合材料界面黏结性能。研究了热压温度及时间和常压DBD等离子体处理电压及次数对纤维结构、纤维表面形貌及化学成分、丝束断裂强力及复合材料剥离强度的影响。结果表明:当热压温度为120 ℃,热压时间为30 s时,UHMWPE纤维织物与TPU的黏结性能达到最优,剥离强度达到了42.88 N/(25 mm);经过常压DBD 等离子体处理后,UHMWPE纤维表面产生明显的刻蚀痕迹,纤维表面含氧极性官能团增加,丝束力学性能及复合材料剥离强度随着处理电压和次数的增加先升高后降低,当处理电压为200 V,处理3次时,丝束断裂强力增加了1.8%,剥离强度提升了30. 72%。

关键词: 超高分子量聚乙烯纤维, 热塑性聚氨酯, 断裂强力, 界面, 黏结性能

Abstract:

Objective This research is to tackle the poor adhesion between ultra-high molecular weight polyethylene (UHMWPE) fiber fabric and thermoplastic polyurethane (TPU) by using atmospheric pressure dielectric barrier discharge (DBD) plasma to treat the surface of UHMWPE fabric and adjust the adhesive process aiming to improve the composite material interface bonding properties.

Method The UHMWPE fiber fabrics were treated by hot-pressing using a hot melt bonding machine with different parameters such as voltage and number of atmospheric pressure in DBD plasma treatment. The composite properties such as fiber structure, surface morphology, chemical composition, breaking strength and peeling strength were tested and characterized by scanning electron microscope, X-ray diffractometer, X-ray photoelectron spectrometer and electronic universal material testing machine.

Results With the increase of heating temperature and time in the thermal compounding process, the monoclinic crystalline shape gradually disappeared and the diffraction peaks of orthogonal crystalline shape became smaller, and the high heating temperature easily led to the destruction of the regular fiber structure (Fig. 2), causing decrease in fracture strength of fibers. For the adhesion performance of UHMWPE fiber fabric and TPU without atmospheric pressure DBD plasma treatment, the peel strength became larger with the increase of hot-pressing time at the lower temperature of 110 ℃ and below.The peel strength increased and then decreased with the increase of hot-pressing time when the treatment temperature increases to 120 ℃ and 130 ℃. When the hot-pressing temperature was 120 ℃ and the time is 30 s, the adhesion performance of UHMWPE fiber fabric and TPU reached the optimum, and the peel strength reached 42.88 N/(25 mm) (Fig. 5). After the atmospheric pressure DBD plasma treatment, the surface of UHMWPE fibers produced obvious etching marks (Fig. 6), while a large number of free radicals were generated on the fiber surface under the excitation of plasma, and the free radicals reacted with oxygen in the air to produce oxygen-containing polar groups such as C=O and O—C=O (Fig. 7), and the content of polar groups increased from 0% to 7.02% and 3.85% (Tab. 2), the increase of reactive groups were shown to significantly improve the adhesion performance of UHMWPE fabric and TPU. The mechanical properties of the filament bundle and the peel strength of the fabric increased and then decreased with the increase of the treatment voltage and the number of treatments. When subjected to three atmospheric DBD plasma treatments under 200 V, the fabric composite performance reached the optimal state, where the filament bundle breaking strength increased by 1.8%, and the peel strength reached 56.05 N/(25 mm), representing an increase of 30.72% (Fig. 8).

Conclusion In the composite manufacturing process of UHMWPE fiber fabric and TPU, when the hot-pressing temperature is 120 ℃ and the hot-pressing time is 30 s, the bonding property of UHMWPE fabric and TPU is the best, with the peel strength being 42.88 N/(25 mm). After atmospheric pressure DBD plasma treatment, obvious etching marks are produced on the UHMWPE fiber surface, the oxygen-containing polar functional groups on the fiber surface are increased, and the mechanical properties of the tow and the peel strength of the fabric increase and then decrease with the increase of the treatment voltage and the number of treatments. When the treatment voltage was 200 V for 3 times, the breaking strength of the tow is increased by 1.8% and the peel strength is increased by 30.72%. In this paper, through the exploration of composite process, atmospheric pressure DBD plasma was used to improve the interfacial bonding properties of UHMWPE fiber fabric/TPU composites, which promoted the application of UHMWPE fiber fabric in light and high strength tent membrane materials.

Key words: ultra-high molecular weight polyethylene fiber, thermoplastic polyurethane, breaking strength, interface, bonding property

中图分类号: 

  • TS102.6

图1

常压DBD等离子体处理装置"

图2

不同温度热压后UHMWPE纤维的XRD图谱"

图3

热压处理前后UHMWPE纤维表面形貌(×5 000)"

图4

热压温度和热压时间与UHMWPE丝束断裂强力的关系"

图5

热压温度和热压时间与剥离强度的关系"

图6

DBD等离子体处理前后UHMWPE纤维表面形貌"

图7

UHMWPE纤维的XPS能谱"

表1

常压DBD 等离子体处理前后UHMWPE纤维表面各元素含量变化"

样品 元素含量/%
C N O
未处理 95.94 0.80 3.26
处理后 92.27 0.62 7.10

表2

常压DBD 等离子体处理前后UHMWPE纤维表面官能团含量变化"

基团种类 基团含量/%
未处理 处理后
C—C/C—H 88.76 80.21
C—O/C—N 11.24 8.90
C=O 0 7.02
O—C=O 0 3.85

图8

常压DBD等离子体处理电压和处理次数与UHMWPE纤维织物/TPU复合材料剥离强度和织物丝束断裂强力的关系"

[1] MUDZI P, RONG W, FIROUZI D, et al. Use of patterned thermoplastic hot film to create flexible ballistic composite laminates from UHMWPE fabric[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.110403.
doi: 10.1016/j.matdes.2022.110403
[2] MWA B, LJA B, ZC B, et al. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2022.115663.
doi: 10.1016/j.compstruct.2022.115663
[3] PRASAD P R, PRAKASH J N, MANJUNATH L H, et al. Physical and wear properties of UHMWPE fabric reinforced epoxy composites[J]. International Journal of Automotive and Mechanical Engineering, 2020, 17(1): 7577-7586.
doi: 10.15282/ijame.17.1.2020.07.0562
[4] 于海龙, 孙长征, 赵同峰. 新型大跨度索结构避难帐篷现场试验与数值模拟[J]. 工程抗震与加固改造, 2013, 35(2): 62-67.
YU Hailong, SUN Changzheng, ZHAO Tongfeng. Field experiment and numerical simulation of long-span cable shelter tent[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(2):62-67.
[5] 丁文瑶, 李静, 李建林. 高强度阻燃涤纶军用篷布的研制[J]. 棉纺织技术, 2018, 46(3): 42-45.
DING Wenyao, LI Jing, LI Jianlin. Development of higher strength flame resistant polyester military tarpaulin[J]. Cotton Textile Technology, 2018, 46(3): 42-45.
[6] BERDAHL P, AKBARI H, LEVINSON R, et al. Weathering of roofing materials:an overview[J]. Construction and Building Materials, 2008, 22(4): 423-433.
doi: 10.1016/j.conbuildmat.2006.10.015
[7] 徐晓伟. PVC涂层膜结构材料的光氧老化性能研究[D]. 上海: 东华大学, 2014: 35-42.
XU Xiaowei. Study on the photo-oxidation of PVC-coated membrane material[D]. Shanghai: Donghua University, 2014:35-42.
[8] 尤秀兰, 胡盼盼, 刘兆峰. 高强有机合成纤维的结构形成[J]. 纺织学报, 2010, 31(5): 146-152.
YOU Xiulan, HU Panpan, LIU Zhaofeng. Structure of high strength organic synthetic fibers[J]. Journal of Textile Research, 2010, 31(5): 146-152.
[9] ARSHEEN M, RAJIV P, WANG X. Coating of TPU-PDMS-TMS on polycotton fabrics for versatile protec-tion[J]. Polymers, 2017, 9(12): 660-676.
doi: 10.3390/polym9120660
[10] YOKOTA M, SHIMIZU A, KOMIYA K, et al. Thermoplastic polyurethane[J]. Encyclopedic Dictionary of Polymers, 1991, 16(3): 746-748.
[11] LIN X X, HUANG X, WANG Y M. The effect of air cold plasma treatment on UHMWPE fiber surface modification[J]. Advanced Materials Research, 2014, 983: 280-283.
doi: 10.4028/www.scientific.net/AMR.983
[12] CAI T, ZHAN S, YANG T, et al. Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication[J]. Tribology International, 2022. DOI:10.1016/j.triboint.2021.107419.
doi: 10.1016/j.triboint.2021.107419
[13] 唐久英, 陈成泅, 王守国. 低温等离子体对UHMWPE纤维的表面改性[J]. 合成纤维工业, 2007, 30(3): 39-40.
TANG Jiuying, CHEN Chengqiu, WANG Shouguo. Surface modification of UHMWPE fiber via low-temperature plasma[J]. China Synthetic Fiber Industry, 2007, 30(3): 39-40.
[14] BYKKA, BABA, BMPA, et al. Melting and heat capacity of gel-spun, ultra-high molar mass polyethylene fibers[J]. Polymer, 2000, 41(16): 6237-49.
doi: 10.1016/S0032-3861(99)00839-3
[15] 饶崛, 徐卫林. 热状态下UHMWPE纤维的力学性能[J]. 纺织学报, 2009, 30(1): 5-8.
RAO Jue, XU Weilin. Mechanical properties of UHMWPE fiber under heating state[J]. Journal of Textile Research, 2009, 30(1): 5-8.
[16] 饶崛, 徐卫林. 热处理后超高分子量聚乙烯纤维结构及力学性能[J]. 纺织科技进展, 2008(5): 9-11.
RAO Jue, XU Weilin. Effect of heat treatment on the structure and mechanical properties of ultra-high-molecular-weight-polyethylene fiber[J]. Progress in Textile Science & Technology, 2008, (5): 9-11.
[17] 展晓晴, 李凤艳, 赵健, 等. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(8): 9-14.
ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, et al. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber[J]. Journal of Textile Research, 2020, 41(8): 9-14.
[18] 李立民, 李文刚, 黄象安. 热处理对热塑性聚氨酯性能及微相分离影响的研究[J]. 聚氨酯工业, 2004, 19(1): 9-11.
LI limin, LI Wengang, HUANG Xiangan. The studies of the effect of heat history on the properties and micro-phase separation of the thermoplastic polyurethane[J]. Polyurethane Industry, 2004, 19(1): 9-11.
[19] REN Y, DING Z, WANG C, et al. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties[J]. Applied Surface Science, 2016, 396(2): 1571-1579.
doi: 10.1016/j.apsusc.2016.11.215
[20] 解林坤, 李树材. 氨低温等离子体处理低密度聚乙烯薄膜的XPS分析[J]. 塑料工业, 2010, 38(10):74-76.
XIE Linkun, LI Shucai. XPS analysis of the LDPE Film modified by low temperature ammonia plasma[J]. China Plastics Industry, 2010, 38(10):74-76.
[21] HOFFMANN E A, KORTVELYESI T, WILUSZ E, et al. Relation between C1s XPS binding energy and calculated partial charge of carbon atoms in polymers[J]. Journal of Molecular Structure: Theochem, 2005, 725(1-3): 5-8.
doi: 10.1016/j.theochem.2005.02.021
[22] 任煜, 张银, 王晓娜, 等. 空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及粘结力的影响研究[J]. 高分子学报, 2016(10): 1439-1446.
REN Yu, ZHANG Yin, WANG Xiaona, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers[J]. Acta Polymerica Sinica, 2016(10): 1439-1446.
[23] 孙雷, 蔡莹莹, 叶伟, 等. 介质阻挡放电对水龙带增强层黏结性能的影响[J]. 纺织学报, 2019, 40(3): 96-101.
SUN lei, CAI Yingying, YE wei, et al. Influence of dielectric barrier discharge on adherent property of hose reinforcement layer[J]. Journal of Textile Research, 2019, 40(3): 96-101.
[24] 刘明雪, 赵倩, 王晓辉, 等. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42 (3): 135-141.
LIU Mingxue, ZHAO Qian, WANG Xiaohui, et al. Bonding fastness of magnetron sputtering nano-films with various textile substrates[J]. Journal of Textile Research, 2021, 42 (3): 135-141.
doi: 10.1177/004051757204200211
[1] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[2] 王中昱, 王云仪, 王诗潭. 基于压力测评的帽子工效性能研究进展[J]. 纺织学报, 2023, 44(12): 242-250.
[3] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[4] 骆春旭, 龚浩然, 吴敏勇, 黄丛, 刘可帅. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11): 61-66.
[5] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[6] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[7] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[8] 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17.
[9] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[10] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[11] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[12] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[13] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[14] 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164.
[15] 段亚弟, 谢巍杰, 邱海鹏, 王晓猛, 王岭, 张典堂, 钱坤. 界面层对三维机织角联锁SiCf/SiC复合材料断裂韧性的影响[J]. 纺织学报, 2023, 44(01): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!