纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 158-166.doi: 10.13475/j.fzxb.20220706501

• 染整与化学品 • 上一篇    下一篇

β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附

王宸杨, 贾洁, 李发学()   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2022-07-14 修回日期:2023-05-25 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 李发学(1977—),男,教授,博士。主要研究方向为功能纺织品及纺织印染废水处理。E-mail:fxlee@dhu.edu.cn
  • 作者简介:王宸杨(1997—),男,硕士生。主要研究方向为印染废水处理。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(JC201703)

Preparation of β-cyclodextrin-based organic framework materials and their adsorption on heavy metal ions

WANG Chenyang, JIA Jie, LI Faxue()   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2022-07-14 Revised:2023-05-25 Published:2023-08-15 Online:2023-09-21

摘要:

为获得成本较低、绿色环保和优良吸附特性的重金属吸附材料,采用水热法合成了β-环糊精(β-CD)基金属有机骨架材料(β-CDMOF);利用柠檬酸(CA)作为交联剂,制备了一系列具有良好水稳定性的β-CD基吸附剂(β-CDMOF/CA)。并以印染废水中主要的重金属离子Sb(Ⅲ)、Pb(Ⅱ)为吸附对象,探讨了吸附剂对2种重金属离子的吸附性能。结果表明,当CA用量为β-CDMOF质量的3倍时,所制备的吸附剂 β-CDMOF/CA(1∶3)对2种金属离子的吸附容量最高,吸附过程符合Langmuir吸附等温模型,均遵循准二级动力学方程,即化学吸附;当Sb(Ⅲ)、 Pb(Ⅱ)溶液pH值分别为6和5时,β-CDMOF/CA(1∶3)对它们的饱和吸附量分别达到515.46和591.71 mg/g; 经过5 次吸附-解吸附后, β-CDMOF/CA(1∶3)对Sb(Ⅲ)、Pb(Ⅱ)的去除率仍高于75%,具有稳定的循环吸附性能。

关键词: β-环糊精基金属有机骨架材料, 印染废水, 重金属离子, 吸附

Abstract:

Objective Heavy metal ions as a common toxic substance in printing and dyeing wastewater cause great harm and much efforts have been made to treat the wastewater aiming to reducing the concentration of heavy metal ions. The adsorption method has the advantages of simple operation, high efficiency and no secondary pollution. As a novel adsorbent, β-cyclodextrin organic skeleton material is explored for adsorbability for heavy metal ions along with simple, eco-friendly and low-cost preparation.

Method β-cyclodextrin organic matrix (β-CDMOF) was synthesized by hydrothermal method with β-cyclodextrin and potassium chloride as raw materials. A series of β-cyclodextrin based adsorbents (β-CDMOF/CA) with good water stability were prepared by using citric acid as crosslinking agent and controlling the different feeding ratios of β-cyclodextrin based MOFs and citric acid in the reaction process, and were named as β-CDMOF/CA (1∶1), β-CDMOF/CA (1∶2) and β-CDMOF/CA (1∶3), respectively. The structures of these adsorbents were analyzed by SEM, FT-IR and XRD, and the adsorption properties of these adsorbents for Sb(Ⅲ) and Pb(Ⅱ) ions were studied.

Results Compared with the irregular morphology of β-CDMOF, the crosslinked β-CDMOF/CA exhibited more regular appearance, and more stable appearance with the increase of CA addition, indicating significant improvement with crosslinking treatment in morphological stability of the prepared adsorbent (Fig. 1). The main frame and structural integrity of β-CD were preserved during the cross-linking process of CA (Fig. 2). The cross-linking reaction between CA and β-CDMOF resulted in the continuous reduction in the crystallinity and the gradual change of crystal structure of β-CDMOF (Fig. 3). The water stability of the adsorbent was gradually enhanced with the increase of crosslinking. The adsorption process of the prepared three adsorbents for Sb(Ⅲ) and Pb(Ⅱ) accorded with the Langmuir adsorption isothermal model and the quasi second-order adsorption kinetic equation, namely chemical adsorption. β-CDMOF/CA(1∶3) demonstrated the best adsorption performance, and its maximum saturated adsorption capacity to Sb(Ⅲ) and Pb(Ⅱ) reached 515.46 and 591.71 mg/g, respectively. After 5 times of adsorption-desorption, the removal rate of Sb(Ⅲ) and Pb(Ⅱ) by β-CDMOF/CA(1∶3) was still higher than 75%, showing a stable cyclic adsorption performance. The adsorption mechanism of Sb(Ⅲ) and Pb(Ⅱ) by the adsorbent was mainly determined through electrostatic interaction and chelation.

Conclusion β-CDMOF was synthesized by hydrothermal method with β-CD and KCl as raw materials, and then the adsorbent β-CDMOF/CA with good water stability and heavy metal ion adsorption was prepared by crosslinking with CA. The results show that the prepared adsorbent is a crystal with relatively uniform size, and its solubility in water is lower than 0.034 g/L, which is easy to filter and separate from wastewater. The adsorption results show that the maximum adsorption capacities of β-CDMOF/CA for Sb(Ⅲ) and Pb(Ⅱ) are 515.46 mg/g and 591.71 mg/g, respectively. The adsorption kinetic results show that the adsorption process of β-CDMOF/CA for two metal ions conforms to the pseudo-second-order kinetic model, which is a chemical adsorption process. After 5 times of adsorption-desorption cycles, the removal rate of β-CDMOF/CA for two metal ions is still more than 75%, indicating good recycling performance. The adsorbent developed in this research has the characteristics of low cost, simple preparation, green environmental protection and excellent adsorption performance, and shows a good application prospect for the treatment of heavy metal ions in textile printing and dyeing wastewater.

Key words: β-Cyclodextrin-based metal-organic frameworks, printing and dyeing wastewater, heavy metal ions, adsorption

中图分类号: 

  • TS193

图1

CA交联前后β-CDMOF的SEM照片"

图2

β-CDMOF和β-CDMOF/CA的FT-IR图"

图3

β-CDMOF和β-CDMOF/CA的XRD曲线"

表1

β-CDMOF和β-CDMOF/CA水中溶解度测试结果"

样品 初始
质量
m0/g
未溶解
部分质
m/g
溶剂
体积
V/L
溶解度S/
(g·L-1)
β-CDMOF 0.05 0.000 4 0.25 0.198
β-CDMOF/CA(1∶1) 0.05 0.041 4 0.25 0.034
β-CDMOF/CA(1∶2) 0.05 0.042 3 0.25 0.031
β-CDMOF/CA(1∶3) 0.05 0.043 8 0.25 0.025

图4

β-CDMOF/CA对Sb(Ⅲ)和Pb(Ⅱ)的去除率随溶液pH值变化曲线"

图5

β-CDMOF/CA对Sb(Ⅲ)和Pb(Ⅱ)的吸附动力学曲线"

表2

β-CDMOF/CA对Sb(Ⅲ)和Pb(Ⅱ)吸附动力学参数"

吸附剂种类 金属
离子
一级动
力学R2
二级动
力学R2
平衡吸附量
Qe/(mg·g-1)
β-CDMOF/CA(1:1) Sb(Ⅲ)+ 0.991 0.999 62.35
β-CDMOF/CA(1:2) 0.996 0.999 56.57
β-CDMOF/CA(1:3) 0.975 0.999 64.00
β-CDMOF/CA(1:1) Pb(Ⅱ) 0.845 0.999 79.95
β-CDMOF/CA(1:2) 0.983 0.999 83.89
β-CDMOF/CA(1:3) 0.935 1 85.63

图6

β-CDMOF/CA对Pb(Ⅱ)和Sb(Ⅱ)的等温吸附模型拟合曲线"

表3

β-CDMOF/CA对Sb(Ⅲ)和Pb(Ⅱ)的等温吸附参数"

吸附剂种类 金属
离子
实验吸
附量
Qe/
(mg·g-1)
饱和吸
附量
qm/
(mg·g-1)
R2
Lang-
muir
模型
Freun-
dlich
模型
β-CDMOF/CA(1∶1) Sb(Ⅲ) 480.70 483.09 0.964 0.952
β-CDMOF/CA(1∶2) 375.09 370.37 0.950 0.920
β-CDMOF/CA(1∶3) 513.19 515.46 0.990 0.981
β-CDMOF/CA(1∶1) Pb(Ⅱ) 445.54 462.96 0.993 0.990
β-CDMOF/CA(1∶2) 521.00 543.48 0.991 0.980
β-CDMOF/CA(1∶3) 551.28 591.71 0.987 0.968

图7

β-CDMOF/CA对Sb(Ⅲ)和Pb(Ⅱ)的循环吸附结果"

图8

β-CDMOF/CA的Zeta电位随pH值变化曲线"

[1] 陈溥, 王志刚. 纺织染整助剂实用手册[M]. 北京: 化学工业出版社, 2003: 52-72.
CHEN P, WANG Z G. Practical manual of textile dyeing and finishing auxiliaries[M]. Beijing: Chemical Industry Press, 2003: 52-72.
[2] 李珍珍, 罗建中, 马莉娜, 等. 工业园印染污水中重金属识别与集中处理技术研究[J]. 工业水处理, 2013, 33(2): 9-12.
LI Zhenzhen, LUO Jianzhong, MA Yina, et al. Research on identification and centralized treatment of heavy metals in dyeing wastewater of Industrial park[J]. Industrial Water Treatment, 2013, 33(2): 9-12.
[3] HU H, ZHANG Q, YUAN W, et al. Efficient Pb removal through the formations of (basic) carbonate precipitates from different sources during wet stirred ballmilling with CaCO3[J]. Science of the Total Environment, 2019, 664: 53-59.
doi: 10.1016/j.scitotenv.2019.01.424
[4] RENGARAJ S, JOO C K, KIM Y, et al. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H[J]. Journal of Hazardous Materials, 2003, 102(2/3): 257-275.
doi: 10.1016/S0304-3894(03)00209-7
[5] CHEN X Y, CHEN D Y, LI N J, et al. Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39227-39235.
[6] TANG J, CHEN Y, ZHAO M, et al. Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficientadsorbent for the selective removal of lead from aqueous solutions[J]. Journal of Hazardous Materials, 2021, 413: 125278-125288.
doi: 10.1016/j.jhazmat.2021.125278
[7] KUROKI A, HIROTO M, URUSHIHARA Y, et al. Adsorption mechanism of metal ions on activated carbon[J]. Adsorption-Journal of the International Adsorption Society, 2019, 25(6): 1251-1258.
doi: 10.1007/s10450-019-00069-7
[8] KUMAR R, JAIN S K. Removal of toxic metal ions and their kinetic studies from aqueous solution using zeolite as an adsorbent[J]. Desalination and Water Treatment, 2017, 70: 244-249.
doi: 10.5004/dwt.2017
[9] ALAWADY A R, ALSHAHRANI A A, AOUAK T A, et al. Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity[J]. Chemical Engineering Journal, 2020, 388: 124267.
doi: 10.1016/j.cej.2020.124267
[10] SYED H I, YAP P S. A review on three-dimensionalcellulose-based aerogels for the removal of heavy metals from water[J]. Science of the Total Environment, 2022, 807: 150606.
doi: 10.1016/j.scitotenv.2021.150606
[11] HE J, LI Y, WANG C, et al. Rapid adsorptionof Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers[J]. Applied Surface Science, 2017, 426: 29-39.
doi: 10.1016/j.apsusc.2017.07.103
[12] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
doi: 10.1038/46248
[13] 魏文英, 方键, 孔海宁, 等. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17(6): 1110-1115.
WEI Wenying, FANG Jian, KON Haining, et al. Synthesis and application of metal-organic skeleton materials[J]. Progress in Chemistry, 2005, 17(6): 1110-1115.
[14] 刘慧君, 杨奥会, 李振东. 基于β-环糊精的金属有机骨架材料的合成研究[J]. 南华大学学报:自然科学版, 2019, 33(5): 13-18.
LIU H J, YANG A, LI Z D. Synthesis of metal-organic framework materials based on β-cyclodextrin[J]. Journal of University of South China: Science and Technology, 2019, 33(5): 13-18.
[15] MORIN-CRINI N, WINTERTON P, FOURMENTIN S, et al. Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processesusing batch studies: a review of inclusion mechanisms[J]. Progress in Polymer Science, 2018, 78: 1-23.
doi: 10.1016/j.progpolymsci.2017.07.004
[16] PELLICER J A, RODRIGUEZ-LOPEZ M I, FORTEA M I, et al. Adsorption properties of β- and hydroxypropyl-β-cyclodextrins cross-linked with epichlorohydrin in aqueous Solution: a sustainable recycling strategy in textile dyeing process[J]. Polymers, 2019, 11(2): 252.
doi: 10.3390/polym11020252
[17] ZHOU Y, LU J, LIU Q, et al. A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation[J]. Journal of Hazardous Materials, 2020, 384: 121267-121274.
doi: 10.1016/j.jhazmat.2019.121267
[18] ZHAO F, REPO E, YIN D, et al. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants[J]. Scientific Reports, 2017, 7: 15811-15824.
doi: 10.1038/s41598-017-16222-7 pmid: 29150635
[19] HUANG W, HU Y, LI Y, et al. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavityand surface functional groups[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 189-197.
doi: 10.1016/j.jtice.2017.11.021
[20] ZHANG H, LI Y X, WANG P L, et al. Synthesis of β-cyclodextrin immobilized starch and Its applicationfor the removal of dyestuff from waste-water[J]. Journal of Polymers and the Environment, 2019, 27(5): 929-941.
doi: 10.1007/s10924-019-01365-7
[1] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[2] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[3] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[4] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[5] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[6] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[7] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[8] 尹喆, 赵海浪, 徐红, 毛志平, 谭玉静. 纺织品中喹啉含量的快速测定[J]. 纺织学报, 2022, 43(12): 125-130.
[9] 付玮康, 郭筱洁, 潘孟涛, 宋聚滟, 奚柏君. 柳絮纤维生物质炭的制备及其对染料废液中Cr(Ⅵ)的吸附性能[J]. 纺织学报, 2022, 43(12): 8-15.
[10] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[11] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[12] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[13] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[14] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[15] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!