纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 181-188.doi: 10.13475/j.fzxb.20220608001
MA Chuangjia, QI Lizhe(), GAO Xiaofei, WANG Ziheng, SUN Yunquan
摘要:
针对人工检测缝纫线迹质量效率低下、当前算法在缝纫线迹质量检测应用上难以检测与面料颜色相近的线迹以及易受面料褶皱、光照变化等因素干扰的问题,提出一种改进的YOLOv4-Tiny目标检测模型,实现缝纫线迹针脚点的识别和定位,进而实现质量检测。首先在YOLOv4-Tiny中引入用SoftPool改进的卷积注意力机制,加强网络对线迹特征的注意;然后在YOLO检测头前引入由SoftPool组成的Soft-SPPF模块,实现模型在检测中对多尺度特征的利用;最后,利用改进后的算法输出针脚点的数量和坐标信息,计算线迹针脚点的密度和均匀度。实验结果表明:在自建数据集上,所提算法的平均精度达到85.50%,检测时间为15.9 ms,相比原算法和常用的目标检测模型更适用于缝纫线迹检测,且该方法计算所得的线迹密度结果与人工检测的差值在0.6针/(10 cm)内,均匀度计算结果相近,满足实际检测精度要求。
中图分类号:
[1] | PATIL N S, RAJKUMAR S S, CHANDURKAR P W, et al. Minimization of defects in garment during stitching[J]. International Journal on Textile Engineering and Processes, 2017, 3(1):24-29. |
[2] | 马文景, 顾国达, 李建琴. 人工智能对纺织业国际分工地位提升的影响研究[J]. 丝绸, 2022, 59(6): 1-9. |
MA Wenjing, GU Guoda, LI Jianqin. Research on the impact of artificial intelligence on international specialization status in textile industry[J]. Journal of Silk, 2022, 59(6): 1-9. | |
[3] | 陈楠. 中国纺织业的现状与未来[J]. 纺织科学研究, 2019(12): 48-49. |
CHEN Nan. The current situation and future of Chinese textile industry[J]. Textile Science Research, 2019(12): 48-49. | |
[4] | 杨帆. 基于机器视觉的缝迹几何量检测与缺陷识别研究[D]. 西安: 西安理工大学, 2019: 21-28. |
YANG Fan. Research on seam geometry detection and defect recognition classification based on machine vision[D]. Xi'an: Xi'an University of Technology, 2019: 21-28. | |
[5] |
JUNG W, KIM D, LEE H, et al. Appropriate smart factory for SMEs: concept, application and perspective[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(1): 201-215.
doi: 10.1007/s12541-020-00445-2 |
[6] | 李彩林, 郭宝云, 贾象阳. 基于立体视觉的线迹质量自动检测方法[J]. 计算机辅助设计与图形学学报, 2015, 27(6): 1067-1073. |
LI Cailin, GUO Baoyun, JIA Xiangyang. Quality auto-inspection method of stitch based on stereo vision[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(6): 1067-1073. | |
[7] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04) [2021-05-06]. https://arxiv.org/abs/1409.1556. |
[8] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision & Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770-778. |
[9] |
KIM H, JUNG W, PARK Y, et al. Broken stitch detection method for sewing operation using CNN feature map and image-processing techniques[J]. Expert Systems with Applications, 2022. DOI:10.1016/j.eswa.2021.116014.
doi: 10.1016/j.eswa.2021.116014 |
[10] | 毕月. 图像处理与目标检测在护照缝纫线检测中的应用[D]. 上海: 上海交通大学, 2020: 48-77. |
BI Yue. The application of image processing and target detection in passport sewing thread detection[D]. Shanghai: Shanghai Jiao Tong University, 2020: 48-77. | |
[11] | WEN W, XIA F, XIA L. Real-time personnel counting of indoor area division based on improved YOLOv4-Tiny[C]// IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ: IEEE, 2021: 1-6. |
[12] | WOO S, PARK J, LEE J. Cbam: convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision (ECCV). Berlin, German: Springer, 2018: 3-19. |
[13] | STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE, 2021: 10337-10346. |
[14] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[15] | ZHANG Z. Flexible camera calibration by viewing a plane from unknown orientations[C]// Proceedings of the 7th IEEE international Conference on Computer Vision. Piscataway, NJ: IEEE, 1999: 666-673. |
[1] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[2] | 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159. |
[3] | 王晓红;张义松;聂多木;张瑞云. 织物印花质量在线检测与控制系统的设计[J]. 纺织学报, 2010, 31(2): 81-84. |
[4] | 陈俊杰;谢春萍. 基于神经网络的织物疵点识别技术[J]. 纺织学报, 2006, 27(4): 36-38. |
|