纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 225-233.doi: 10.13475/j.fzxb.20220405002

• 综合述评 • 上一篇    下一篇

计算机辅助配棉技术研究进展

王梦蕾, 王静安, 高卫东()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2022-04-13 修回日期:2023-02-25 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 高卫东(1959—),男,教授,博士。主要研究方向为纺织品的数字化、智能化制造。E-mail:gaowd3@163.com
  • 作者简介:王梦蕾(1992—),女,硕士生。主要研究方向为纺织智能制造。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(JUSRP121030);江苏省基础研究计划自然科学青年基金项目(BK200221061)

Research progress in computer aided cotton blending technology

WANG Menglei, WANG Jing'an, GAO Weidong()   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2022-04-13 Revised:2023-02-25 Published:2023-08-15 Online:2023-09-21

摘要:

为探索计算机辅助配棉技术的未来发展,促进棉纺企业精细化管理水平与生产效益的提升,介绍了计算机辅助配棉的系统框架,围绕其中技术模块及技术内涵,总结与分析了其发展应用情况。针对计算机辅助配棉过程中的2个关键模块—纱线质量预测、配棉方案制定所采用的核心技术作了重点解析,并指出联通云端市场数据、适应企业个性化生产模式是未来的发展方向。当前研究对大数据的处理效率以及对生产模式普适性还需进一步提升,同时需从特征表达、模型结构、优化算法方面探索提高模型高效性、准确性和泛用性的方法。

关键词: 计算机辅助配棉, 纱线质量预测, 机器学习, 优化算法, 产业互联

Abstract:

Significance Computer-aided cotton blending integrates advanced intelligent technology and traditional manufacturing, which is an important foothold of intelligent transformation of textile industry. The "Fourteenth Five-Year Plan" for developing the textile industry and demand for intelligent textile manufacturing call for comprehensively accelerating the industry's digital transformation, optimizing the production process, improving production efficiency, and achieving lean manufacturing. The textile industry's intelligent infrastructure has received a lot of attention during the "Thirteenth Five-Year Plan" period. Many technically advanced raw cotton information platforms and production information systems have emerged, gathering a sizable amount of raw cotton sales and public inspection data on the supply side of the raw cotton, and forming an internal enterprise including procurement, inventory, process, scheduling, products, sales and other dimensions of Standardized production data, constituting a sizable set of "supply and production" big-data system. For the intellectual development of China's cotton spinning firms, it is now imperative to find a way to maximize the value of supply and production data and to investigate intelligent management technologies that can significantly boost production efficiency and process level.

Progress The system framework of computer-aided cotton blending is introduced, and its development and application are summarized and analyzed around technical modules and technical connotations, in order to explore the future development of computer-aided cotton blending technology and promote the improvement of advanced management level and production efficiency of cotton spinning enterprises. The current research on intelligent raw cotton management aims to solve the optimization of raw cotton usage, which mainly includes the yarn quality prediction model and the cotton blending optimization model. (1) The yarn quality prediction model methods use supervised machine learning models such as multiple linear regression, support vector machines, artificial neural networks, and other improved models. In terms of model training approaches, evolutionary optimization algorithms have gained considerable attention in addition to the conventional analytical solution method and gradient descent method. (2) The cotton blending optimization model prioritizes cotton cost and yarn quality and creates a multi-objective optimization model based on inventory, total cotton consumption, cotton type, and cotton similarity. (3) To meet the needs of cotton spinning businesses for yarn quality management, a set of cotton blending technology management decision support system will be created in practical applications, integrating four functional modules of raw cotton inventory database maintenance, yarn quality prediction and management, cotton blending program formulation, cotton blending and yarn quality files, and a human-computer interactive interface.

Conclusion and Prospect After analyzing the two key components of the computer-aided cotton blending process, namely yarn quality prediction and the core technology utilized in the design of the cotton blending scheme, a number of difficulties with the current research are proposed: (1) The current study yarn quality prediction model lacks useful characteristics to characterize the performance distribution data of raw cotton in the cotton blending scheme and cannot adapt to the cotton blending scheme with length variation. (2) The current cotton blending optimization model optimizes the formulation of each cotton blending scheme as a single task and only for the production of a single variety (or a single production line), ignoring the fact that cotton blending is a time series task for multiple varieties on the multi-production line. Methods to improve the efficiency, precision, and generalizability of models must be investigated from the viewpoints of feature expression, model structure, and optimization technique. Also, the processing efficiency of large data and the universality of production mode must be enhanced. On the one hand, the computer-aided cotton blending system continues to progress the standardization and expansion of raw cotton quality inspection, while focusing on the in-depth application of big data for raw cotton. On the other hand, it will likely accelerate the intelligent transformation and upgrading of the textile sector. As big data and artificial intelligence technologies continue to improve, it is expected that the computer-aided cotton blending system study will make major strides in integrating cloud market data and adapting to the personalized production mode of future businesses.

Key words: computer aided cotton blending, yarn quality prediction, machine learning, optimization algorithm, industrial interconnection

中图分类号: 

  • TS111.8

图1

原棉指标到纱线质量指标的映射关系"

图2

计算机辅助配棉系统框架示意图"

[1] HE Zhenglei, XU Jie, TRAN Kim Phuc, et al. Modeling of textile manufacturing processes using intelligent techniques: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1/2): 39-67.
doi: 10.1007/s00170-021-07444-1
[2] TERCAN Hasan, MEISEN Tobias. Machine learning and deep learning based predictive quality in manufacturing: a systematic review[J]. Journal of Intelligent Manufacturing, 2022, 33(7): 1879-1905.
doi: 10.1007/s10845-022-01963-8
[3] 李瑛. 基于HVI的计算机配棉优化的研究[D]. 西安: 西安工程大学, 2013:47-50.
LI Ying. The optimization research of computer blending based on HVI[D]. Xi'an: Xi'an Polytechnic University, 2013:47-50.
[4] 张洁, 徐楚桥, 汪俊亮, 等. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(9): 1-10.
ZHANG Jie, XU Chuqiao, WANG Junliang, et al. Advancement in data-driven intelligent control system for roboticized textile production[J]. Journal of Textile Research, 2022, 43(9): 1-10.
doi: 10.1177/004051757304300101
[5] 邱兆宝. 基于HVI数据的配棉优选模型及应用研究[J]. 棉纺织技术, 2012, 40(12): 14-17.
QIU Zhaobao. Cotton assorting optimized model based on HVI data and its application[J]. Cotton Textile Technology, 2012, 40(12): 14-17.
[6] 杨建国. 自动配棉系统在纺织企业和棉花现代物流体系中的应用研究[D]. 天津: 天津工业大学, 2017:22-23.
YANG Jianguo. Application of automatic cotton blending system in textile enterprises and modern cotton logistics system[D]. Tianjin:Tiangong University, 2017:22-23.
[7] 易文峰. 智能纺纱工艺信息系统研究与开发[D]. 南京: 东南大学, 2015:25-26.
YI Wenfeng. Research and development of the spinning process intelligent information system[D]. Nanjing: Southeast University, 2015:25-26.
[8] 严瑛, 李飞飞. 浅谈计算机配棉系统的发展与应用[J]. 棉纺织技术, 2014, 42(4): 13-16.
YAN Ying, LI Feifei. Discussion on development and application of computer cotton assorting system[J]. Cotton Textile Technology, 2014, 42(4): 13-16.
[9] 康强. 合理设置计算机配棉系统[J]. 电子设计工程, 2014, 22(14): 50-51.
KANG Qiang. Reasonable set up the computer with cotton system[J]. Electronic Design Engineering, 2014, 22(14): 50-51.
[10] 储才元, 凌导宏. 棉纤维性能和成纱质量间关系的研究[J]. 纺织学报, 1993, 14(7): 4-8.
CHU Caiyuan, LING Daohong. Study on the relationship between cotton fiber properties and yarn quality[J]. Journal of Textile Research, 1993, 14(7): 4-8.
[11] KRUPINCOVA G, GABRIELA. Yarn hairiness versus quality of cotton fibres[J]. Indian Journal of Fibre & Textile Research, 2013, 38(3): 223-229.
[12] UREYEN M E, KADOGLU H. Regressional estimation of ring cotton yarn properties from HVI fiber pro-perties[J]. Textile Research Journal, 2006, 76(5): 360-366.
doi: 10.1177/0040517506062262
[13] DORAN E C, SAHIN C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines[J]. Textile Research Journal, 2020, 90(13/14): 1558-1580.
doi: 10.1177/0040517519896761
[14] 王东平, 吴志刚. 基于灰色关联支持向量机回归的纱线质量预测[J]. 山东工业技术, 2019(9): 158-159.
WANG Dongping, WU Zhigang. Yarn quality prediction based on grey relational support vector machine regression[J]. Shandong Industrial Technology, 2019(9): 158-159.
[15] 项前, 杨建国, 程隆棣. 基于支持向量机的纱线质量预测[J]. 纺织学报, 2008, (4): 43-46.
XIANG Qian, YANG Jianguo, CHENG Longdi. Yarn quality prediction by support vector machine method[J]. Journal of Textile Research, 2008, 29(4): 43-46.
[16] 宋楚平, 蔡彬彬, 李少芹. 基于SVM的纱线生产工艺智能优化研究[J]. 毛纺科技, 2015, 43(7): 13-17.
SONG Chuping, CAI Binbin, LI Shaoqin. Intelligent optimization study of yarn production processes based on SVM[J]. Wool Textile Journal, 2015, 43(7): 13-17.
[17] 吕志军, 杨建国, 项前. 基于遗传算法参数优化的纱线质量预测技术[J]. 东华大学学报(自然科学版), 2012, 38(5): 519-523.
LÜ Zhijun, YANG Jianguo, XIANG Qian. GA based parameters optimization on prediction method of yarn quality[J]. Journal of Donghua University(Natural Science), 2012, 38(5): 519-523.
[18] ABAKAR K A A, YU C. Performance of SVM based on PUK kernel in comparison to SVM based on RBF kernel in prediction of yarn tenacity[J]. Indian Journal of Fibre & Textile Research, 2014, 39(1): 55-59.
[19] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:97.
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016:97.
[20] CAO W, WANG X, MING Z, et al. A review on neural networks with random weights[J]. Neurocomputing, 2018, 275: 278-287.
doi: 10.1016/j.neucom.2017.08.040
[21] MWASIAGI J I, HUANG X, WANG X. Performance of neural network algorithms during the prediction of yarn breaking elongation[J]. Fibers and Polymers, 2008, 9(1): 80-86.
doi: 10.1007/s12221-008-0013-5
[22] 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(1): 52-56.
ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network[J]. Journal of Textile Research, 2019, 40(1): 52-56.
[23] JIANG H, SONG J, ZHANG B, et al. Prediction of yarn unevenness based on BMNN[J]. Journal of Engineered Fibers and Fabrics, 2021. DOI:10.1177/15589250211037978.
doi: 10.1177/15589250211037978
[24] TURHAN Y, TOPRAKCI O. Comparison of high-volume instrument and advanced fiber information systems based on prediction performance of yarn properties using a radial basis function neural network[J]. Textile Research Journal, 2013, 83(2): 130-147.
doi: 10.1177/0040517512445334
[25] 胡臻龙. 基于深度神经网络的纱线质量预测模型研究[D]. 上海: 东华大学, 2020:44-90.
HU Zhenlong. Research on yarn quality prediction model based on deep neural network[D]. Shanghai: Donghua University, 2020:44-90.
[26] ZHANG B, SONG J, ZHAO S, et al. Prediction of yarn strength based on an expert weighted neural network optimized by particle swarm optimization[J]. Textile Research Journal, 2021, 91(23-24): 2911-2924.
doi: 10.1177/00405175211022619
[27] 熊经纬, 杨建国, 徐兰. 基于PSO-BP神经网络的纱线质量预测[J]. 东华大学学报(自然科学版), 2015, 41(4): 498-502.
XIONG Jingwei, YANG Jianguo, XU Lan. Combining the particle swarm optimization with BP neural network for yarn quality forecasting[J]. Journal of Donghua University(Natural Science), 2015, 41(4): 498-502.
[28] 项前. 可重构的纺织品智能工艺设计与虚拟加工方法及应用研究[D]. 上海: 东华大学, 2011:121-128.
XIANG Qian. Research and application on method of reconfigurable textile intelligent process planning and virtual machining[D]. Shanghai: Donghua University, 2011:121-128.
[29] 王军. 基于复杂自适应Petri网的棉纺生产预报模型及其优化[D]. 上海: 东华大学, 2016:67-77.
WANG Jun. Cotton spinning production forecast model and optimization based on complex adaptive petri net[D]. Shanghai: Donghua University, 2016:67-77.
[30] 刘贵. 精毛纺织品虚拟加工中的预报与反演模型研究[D]. 上海: 东华大学, 2010:133-145.
LIU Gui. Study on the prediction and deduction model used in the virtual manufacturing of the worsted textiles[D]. Shanghai: Donghua University, 2010:133-145.
[31] AMIN A E. A novel classification model for cotton yarn quality based on trained neural network using genetic algorithm[J]. Knowledge-Based Systems, 2013, 39: 124-132.
doi: 10.1016/j.knosys.2012.10.008
[32] SOLTANI P, HADAVANDI E. A monarch butterfly optimization-based neural network simulator for prediction of siro-spun yarn tenacity[J]. Soft Computing, 2019, 23(20): 10521-10535.
doi: 10.1007/s00500-018-3624-9
[33] HADAVANDI E, MOSTAFAYI S, SOLTANI P. A Grey Wolf Optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills[J]. Applied Soft Computing, 2018, 72: 1-13.
doi: 10.1016/j.asoc.2018.07.055
[34] 马创涛. 面向数字化车间的棉纺质量自主控制与管理[D]. 西安: 西安工程大学, 2018:26-30.
MA Chuangtao. Self-control and management of cotton spinning quality for digital workshop[D]. Xi'an: Xi'an Polytechnic University, 2018:26-30.
[35] MWASIAGI J I, HUANG X, WANG X. The use of hybrid algorithms to improve the performance of yarn parameters prediction models[J]. Fibers and Polymers, 2012, 13(9): 1201-1208.
doi: 10.1007/s12221-012-1201-x
[36] 丁志荣. 纺纱配料规则自动提取算法[J]. 纺织学报, 2006, 27(10): 39-42.
DING Zhirong. Algorithm of automatically finding out regulation for fiber dosage[J]. Journal of Textile Research, 2006, 27(10): 39-42.
[37] 丁志荣. 改进的方案组合配棉方法研究[J]. 纺织学报, 2005, 26(3): 38-40.
DING Zhirong. Method research on improved schemes combination for cotton assorting[J]. Journal of Textile Research, 2005, 26(3): 38-40.
[38] 丁志荣. 用于纺纱生产的优化排包方法: 201810830976.X[P]. 2020-07-31.
DING Zhirong. Optimized packing method for spinning production: 201810830976.X[P]. 2020-07-31.
[39] 杜兆芳, 刘小平, 韩江洪. 基于改进微分进化算法的优化配棉[J]. 纺织学报, 2011, 32(7): 35-39.
DU Zhaofang, LIU Xiaoping, HAN Jianghong. Research on cotton blending optimization based on improved differential evolution algorithm[J]. Journal of Textile Research, 2011, 32(7): 35-39.
[40] 孙婧. 智能配棉与纺纱质量预测系统的研究与开发[D]. 南京: 东南大学, 2012:36-37.
SUN Jin, Research and development of intelligent cotton blending and spinning quality prediction system[D]. Nanjing: Southeast University, 2012:36-37.
[41] 宋楚平, 李少芹. 应用改进遗传算法的自动配棉模型优化与应用[J]. 纺织学报, 2016, 37(9): 151-155.
SONG Chuping, LI Shaoqin. Optimum and application of automatic cotton blending based on high volume instrument data by improved genetic algorithm[J]. Journal of Textile Research, 2016, 37(9): 151-155.
[42] 张增强, 黄马壮. 粒子群算法在计算机自动配棉优化中的应用[J]. 纺织学报, 2011, 32(2): 44-47.
ZHANG Zenqiang, HUANG Mazhuang. Optimizing computer automatic cotton distribution using particle swarm algorithm[J]. Journal of Textile Research, 2011, 32(2): 44-47.
[43] DAS S, GHOSH A. Cotton fibre-to-yarn engineering: a simulated annealing approach[J]. Fibres and Textiles in Eastern Europe, 2015, 23(3): 51-53.
doi: 10.5604/12303666.1152442
[44] 陈怀忠, 何仁初, 史桂丽. 基于改进PSO算法的自动配棉工艺参数优化设计[J]. 纺织学报, 2014, 35(6): 142-147.
CHEN Huaizhong, HE Renchu, SHI Guili. Parameter optimization design for automatic cotton assorting based on improved PSO algorithm[J]. Journal of Textile Research, 2014, 35(6): 142-147.
[45] 易文峰, 周俊. 基于萤火虫-粒子群混合算法的配棉优化研究[J]. 工业控制计算机, 2014, 27(11): 14-16.
YI Wenfeng, ZHOU Jun. Cotton-blending based on hybrid algorithm of glowworm swarm optimization and particle swarm optimization[J]. Industrial Control Computer, 2014, 27(11): 14-16.
[46] MAJUMDAR A, MAJUMDAR P K, SARKAR B. An investigation on yarn engineering using artificial neural networks[J]. Journal of The Textile Institute, 2006, 97(5): 429-434.
doi: 10.1533/joti.2006.0266
[1] 周其洪, 韩伟龙, 陈鹏, 洪巍, 岑均豪. 基于灰色系统理论的筒子纱卷绕密度测量误差预测[J]. 纺织学报, 2023, 44(10): 60-67.
[2] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[3] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[4] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[5] 杨景朝, 蒋秀明, 董九志, 陈云军, 梅宝龙. 基于机器学习的整体穿刺加压参数预测方法[J]. 纺织学报, 2019, 40(08): 157-163.
[6] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[7] 王侃枫;陆凯;黄秀宝. 精梳毛纺纱线质量预报[J]. 纺织学报, 2004, 25(05): 34-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!