纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 50-56.doi: 10.13475/j.fzxb.20220305201

• 纤维材料 • 上一篇    下一篇

牢固结合的多层纳米纤维复合材料的制备及其过滤性能

安雪1, 刘太奇1(), 李言1, 赵小龙1,2   

  1. 1.北京石油化工学院 环境材料研究中心, 北京 102617
    2.北京化工大学 材料科学与工程学院, 北京 100029
  • 收稿日期:2022-03-14 修回日期:2022-07-04 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 刘太奇(1964—),男,教授,博士。主要研究方向为多层纳米复合材料、航天材料和新能源材料。E-mail:liutaiqi@bipt.edu.cn
  • 作者简介:安雪(1998—),女,硕士生。主要研究方向为纳米纤维及其环境应用材料。

Preparation and filtration properties of firmly bonded multi-layer nanocomposite material

AN Xue1, LIU Taiqi1(), LI Yan1, ZHAO Xiaolong1,2   

  1. 1. Research Center of Ecomaterial, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2022-03-14 Revised:2022-07-04 Published:2023-08-15 Online:2023-09-21

摘要:

为提升纳米纤维复合过滤材料的过滤效率及膜层间的结合力,通过静电纺丝技术在工业过滤织物上纺制低熔点聚合物纤维和聚酰胺6(PA6)纳米纤维,再与玻璃纤维进行热压成形制备出一种结合牢固的多层纳米纤维复合材料,并研究了其过滤性能,同时通过建立拉力测试法研究了复合材料的层间结合强度。结果表明:复合材料的过滤效率随着PA6纳米纤维膜面密度和聚苯乙烯(PS)微球水溶液起始浊度值的增加而增高,当PA6纳米纤维膜面密度为2.5 g/m2时,该复合材料对直径为1 μm的PS微球的过滤效率可达98.9%;复合材料层间结合力随着低熔点聚合物纤维平均直径的增加而增大,当采用茂金属线性低密度聚乙烯纤维时,其结合力可达8.2 N/cm2

关键词: 静电纺丝, 纳米纤维, 聚酰胺6, 聚苯乙烯, 茂金属线性低密度聚乙烯, 多层纳米复合材料, 过滤效率

Abstract:

Objective At present, the development of water treatment technology is a global task,because of the water pollution and the shortage of pure water faced by mankind. In consideration of its superior performance, nanofiber composite filtering materials are widely used to efficiently filter micron sized particulate pollutants in sewage. However, how to increase the filtering efficiency and the adhesion between nanofiber layers and how to evaluate the adhesion are crucial. Therefore, this work is set out to prepare the multilayer materials with high filtering efficiency and adhesion between nanofiber layers and to set up test method for the adhesion.

Method In this work, a firmly bonded multilayer nanofiber composites was prepared by putting five types of low melting point polymer fibers, which are polyethylene oxide (PEO), polyvinylidene difluoride(PVDF), polystyrene (PS), polymethyl methacrylate(PMMA), metallocene linear low density polyethylene(mLLDPE), together with polyamide 6 (PA6) nanofibers on industrial filter fabrics through eletrospun technology pressed with glass fiber at a designed temperature. Meanwhile, a tensile test method was established to measure the bonding strength of multilayer nanocomposites. The effects of the content of PA6 nanofibers of the materials and initial turbidity value of PS microspheres with a diameter of 1μm solution on the filtration efficiency and filtration flux were also studied.

Results The low melting point polymer fibers containing PEO, PVDF, PS, PMMA and mLLDPE were made to have different fiber diameters, which are 0.27, 0.36, 0.42, 1.29 and 35.31 μm, respectively(Tab. 1). The multilayer nanocomposite material was successfully prepared by hot pressing the industrial filter cloth spun with low melting point polymer fiber and glass fiber, and the adhesion between nanofiber layers of the multilayer nanocomposite material was significantly improved compared with the common sandwich materials, increasing from 2.6 N/cm2 to 8.2 N/cm2. When the concentration of PS microsphere suspension with a diameter of 1 μm was 80 NTU, the filtration efficiency of multilayer nanofiber composite materials enhances with the increase of the surface density of the PA6 nanofibers(Fig. 5). When the surface density of PA6 nanofibers was constant, the filtration efficiency of the multilayer nanofiber composite materials increaseds with the increase of initial turbidity value of PS microspheres solution, and the filtration efficiency was up to 97.75%. When the initial turbidity of the solution was 160 NTU and the PA6 nanofiber membrane density was 2.5 g/m2, the filtration efficiency of materials on PS microspheres with a diameter of 1μm reached 98.9%, the flux recovery rate was 76.3%, and the interception rate reached above 98%(Tab. 2). With the increase of the surface density of the PA6 nanofiber, the filtration flux of the material to PS microsphere filtrate gradually decreased (Fig. 6). Moreover, a tensile test method was designed to measure the adhesion between nanofiber layers of the multilayer nanocomposite material(Fig. 2).

Conclusion In conclusion, after the addition of low melting point polymer fiber, a firmly bonded multilayer nanofiber composite was prepared, and a test method for the adhesion of nanofiber composite was established. The multilayer nanofiber composite was found to have high interlayer adhesion, which is significantly higher than the common sandwich purification material, and the composite has good filtration performance for PS microspheres with a diameter of 1 μm. It would have broad application prospects in the field of sewage filtration.

Key words: electrospinning, nanofiber, polyamide 6, polystyrene, metallocene linear low density polyethylene, multilayer nanocomposite, filtration efficiency

中图分类号: 

  • TS101

图1

多层纳米纤维复合材料制备流程示意图"

图2

多层纳米纤维复合材料结合力测量示意图"

表1

采用不同低熔点聚合物纤维制成的多层纳米纤维复合材料的结合力对比"

低熔点聚合
物纤维名称
低熔点聚合物纤维
平均直径/μm
结合力/
(N·cm-2)
NO 0.00 2.6
PEO 0.27 3.3
PVDF 0.36 4.2
PS 0.42 5.8
PMMA 1.29 6.3
mLLDPE 35.31 8.2

图3

大直径纤维微熔示意图"

图4

mLLDPE纤维及其多层纳米复合材料的SEM照片"

图5

过滤效率与面密度关系"

图6

浊度为160 FTU时的过滤通量与面密度的关系"

[1] TLILI I, ALAKNHAL T A. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment[J]. Journal of Water Reuse and Desalination, 2019, 9(3): 232-248.
doi: 10.2166/wrd.2019.057
[2] 余灯广, 赵坤, 宁廷保, 等. 静电纺丝纳米纤维膜在水处理中的应用现状[J]. 有色金属材料与工程, 2021, 42(4): 1-11.
YU Dengguang, ZHAO Kun, NING Tingbao, et al. Application status of electrospun nanofiber membranes in water treatment[J]. Nonferrous Metal Materials and Engineering, 2021, 42(4):1-11.
[3] ZHANG Y R, WANG F, WANG Y X. Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment[J]. Materials Today Communications, 2021. DOI:10.1016/j.mtcomm.2021.102272.
doi: 10.1016/j.mtcomm.2021.102272
[4] HAN D, SERRA R, GORELICK N, et al. Multi-layered coresheath fiber membranes for controlled drug release in the local treatment of brain tumor[J]. Scientific Reports, 2019, 9: 1-12.
doi: 10.1038/s41598-018-37186-2
[5] 卫志美, 刘振艳, 王劭妤, 等. 多种结构聚醚砜纤维过滤膜的制备及过滤性能[J]. 高分子材料科学与工程, 2020, 36 (11): 101-108.
WEI Zhimei, LIU Zhenyan, WANG Jieyu, et al. Preparation and filtration performance of different structure polyethersulfone fibrious membrances[J]. Polymeric Materials Science and Engineering, 2020, 36(11): 101- 108.
[6] 陈蕾, 范星, 石玉, 等. 静电纺丝纳米纤维在水处理中的应用进展[J]. 广州化学, 2021, 46(6): 11-18,50.
CHEN Lei, FAN Xing, SHI Yu, et al. Progress of electrospinning nanofibers in water treatment[J]. Guangzhou Chemistry, 2021, 46(6): 11-18,50.
[7] 魏楚, 钱晓明, 钱幺, 等. 空气过滤用微纳米纤维多层梯度复合材料的制备与性能[J]. 材料科学与工程学报, 2021, 39 (4):634-639,658.
WEI Chu, QIAN Xiaoming, QIAN Yao, et al. Preparation and properties of micro nanofiber multilayer gradient composite air filters[J]. Journal of Materials Science and Engineering, 2021, 39(4):634-639,658.
[8] LEUNG Wallace Woon-Fong, HAU Curie Wing-Yi, CHOY Hung-Faat. Microfiber-nanofiber composite filter for high efficiency and low pressure drop under nano-aerosol loading[J]. Separation and Purification Technology, 2018, 206: 26-38.
doi: 10.1016/j.seppur.2018.05.033
[9] 吴佳林, 黄金婷, 杨璧玲. PLA/PET复合滤料的制备及性能研究[J]. 辽宁化工, 2019, 48(11): 1059-1021.
WU Jialin, HUANG Jinting, YANG Biling. Preparation and properties of PLA/ PET composite filter mate-rial[J]. Liaoning Chemical Industry, 2019, 48(11): 1059-1021.
[10] 李曼, 武丁胜, 李家莉, 等. 乙烯-醋酸乙烯共聚物纳米纤维网状结构黏合材料[J]. 中国塑料, 2020, 34(6):34-39.
doi: 10.19491/j.issn.1001-9278.2020.06.006
LI Man, WU Dingsheng, LI Jiali, et al. An Adhesive material with framework structure based on ethylene vinyl acetate copolymer nanofibers[J]. China Plastics, 2020, 34(6):34-39.
doi: 10.19491/j.issn.1001-9278.2020.06.006
[11] 刘瑞雪, 刘太奇, 操彬彬. PVA 纳米纤维的水稳定性与夹心多层纳米复合材料的制备[J]. 高分子材料科学与工程, 2012, 28 (4): 152-159.
LIU Ruixue, LIU Taiqi, CAO Binbin. Stabilization of poly (vinyl alcohol) nanofibers and the fibers based sandwich structure purification materia[J]. Polymeric Materials Science and Engineering, 2012, 28 (4):152-159.
[12] 操彬彬, 刘太奇, 刘瑞雪. 静电喷涂制备抗菌夹心多层纳米复合材料及其抗菌性能[J]. 高分子材料科学与工程, 2012, 28 (4): 117-120.
CAO Binbin, LIU Taiqi, LIU Ruixue. Preparation and antibacterial property of anti bacterial sandwich structure nanofiberous cleaning materia[J]. Polymeric Materials Science and Engineering, 2012, 28 (4): 117-120.
[13] 魏楚, 钱晓明, 钱幺. 纳米纤维复合空气过滤材料的研究进展[J]. 化工新型材料, 2020, 48(8): 32-36,41.
WEI Chu, QIAN Xiaoming, QIAN Yao. Research progress of nanofiber composite air filter material[J]. New Chemical Materials, 2020, 48(8): 32-36,41.
[14] JALALIAN N, NABAVI S R. Electrosprayed chitosan nanoparticles decorated on polyamide 6 electrospun nanofibers as membrane for acid fuchsin dye filtration from water[J]. Surfaces and Interfaces, 2020. DOI:10.1016/j.surfin.2020.100779.
doi: 10.1016/j.surfin.2020.100779
[15] ILIAS C, GIORGOS G, PANAGIOTIS A K, et al. The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites[J]. Polymer Testing, 2021. DOI:10.1016/J.PolymerTesting.2021.107102.
doi: 10.1016/J.PolymerTesting.2021.107102
[16] CHARITOS I, GEORGOUSIS G, KONTOU E. Preparation and thermomechanical characterization of metallocene linear low-density polyethylene/carbon nanotube nanocomposites[J]. Polymer Composites, 2019, 40(S2): 1263-1273.
[17] 赵娜, 刘太奇, 刘瑞雪. 熔体静电纺丝法制备mLLDPE纤维的研究[J]. 新技术新工艺, 2013 (2): 94-97.
ZHAO Na, LIU Taiqi, LIU Ruixue. Research on preparation of mLLDPE fibers by melt electrospinning technique[J]. New Technology & New Process, 2013(2): 94-97.
[18] GOPAL R, KAUR S, MA Z W, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006, 281(1): 581-586.
doi: 10.1016/j.memsci.2006.04.026
[19] 刘鹏, 彭砚双, 万晔, 等. 纳米纤维素对聚偏氟乙烯复合超滤膜结构与性能的影响[J]. 合成纤维工业, 2022, 45(1):14-19.
LIU Peng, PENG Yanshuang, WAN Ye, et al. Influence of nanocellulose on structure and properties of PVDF composite ultrafiltration membrane[J]. China Synthetic Fiber Industry, 2022, 45(1):14-19.
[20] KANAFCHIAN M, VALIZADEH M, HAGHI A K. A study on the effects of laminating temperature on the polymeric nanofiber web[J]. Korean Journal of Chemical Engineering, 2011, 28(2): 445-448.
doi: 10.1007/s11814-010-0400-7
[21] 杨园园, 秦青青, 雷婷, 等. PVDF超滤膜制备及在MBR处理洗涤废水中的应用[J]. 工程塑料应用, 2022, 50(3):19-24.
YANG Yuanyuan, QIN Qingqing, LIE Ting, et al. Preparation of PVDF ultrafiltration membrane and its application in MBR treatment of washing waste-water[J]. Engineering Plastics Application, 2022, 50(3):19-24.
[22] 曹志普. 介孔Al2O3/PVDF复合中空纤维膜的制备及其性能[J]. 工业水处理, 2015, 35(5):62-66.
CAO Zhipu. Preparation of mesoporous Al2O3/PVDF composite hollow fiber membrane and its perfor-mances[J]. Industrial Water Treatment, 2015, 35(5):62-66.
[1] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[2] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[3] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[4] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[5] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[6] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[7] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[8] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[9] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[10] 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8.
[11] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[12] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[13] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!