纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 50-56.doi: 10.13475/j.fzxb.20220305201
AN Xue1, LIU Taiqi1(), LI Yan1, ZHAO Xiaolong1,2
摘要:
为提升纳米纤维复合过滤材料的过滤效率及膜层间的结合力,通过静电纺丝技术在工业过滤织物上纺制低熔点聚合物纤维和聚酰胺6(PA6)纳米纤维,再与玻璃纤维进行热压成形制备出一种结合牢固的多层纳米纤维复合材料,并研究了其过滤性能,同时通过建立拉力测试法研究了复合材料的层间结合强度。结果表明:复合材料的过滤效率随着PA6纳米纤维膜面密度和聚苯乙烯(PS)微球水溶液起始浊度值的增加而增高,当PA6纳米纤维膜面密度为2.5 g/m2时,该复合材料对直径为1 μm的PS微球的过滤效率可达98.9%;复合材料层间结合力随着低熔点聚合物纤维平均直径的增加而增大,当采用茂金属线性低密度聚乙烯纤维时,其结合力可达8.2 N/cm2。
中图分类号:
[1] |
TLILI I, ALAKNHAL T A. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment[J]. Journal of Water Reuse and Desalination, 2019, 9(3): 232-248.
doi: 10.2166/wrd.2019.057 |
[2] | 余灯广, 赵坤, 宁廷保, 等. 静电纺丝纳米纤维膜在水处理中的应用现状[J]. 有色金属材料与工程, 2021, 42(4): 1-11. |
YU Dengguang, ZHAO Kun, NING Tingbao, et al. Application status of electrospun nanofiber membranes in water treatment[J]. Nonferrous Metal Materials and Engineering, 2021, 42(4):1-11. | |
[3] |
ZHANG Y R, WANG F, WANG Y X. Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment[J]. Materials Today Communications, 2021. DOI:10.1016/j.mtcomm.2021.102272.
doi: 10.1016/j.mtcomm.2021.102272 |
[4] |
HAN D, SERRA R, GORELICK N, et al. Multi-layered coresheath fiber membranes for controlled drug release in the local treatment of brain tumor[J]. Scientific Reports, 2019, 9: 1-12.
doi: 10.1038/s41598-018-37186-2 |
[5] | 卫志美, 刘振艳, 王劭妤, 等. 多种结构聚醚砜纤维过滤膜的制备及过滤性能[J]. 高分子材料科学与工程, 2020, 36 (11): 101-108. |
WEI Zhimei, LIU Zhenyan, WANG Jieyu, et al. Preparation and filtration performance of different structure polyethersulfone fibrious membrances[J]. Polymeric Materials Science and Engineering, 2020, 36(11): 101- 108. | |
[6] | 陈蕾, 范星, 石玉, 等. 静电纺丝纳米纤维在水处理中的应用进展[J]. 广州化学, 2021, 46(6): 11-18,50. |
CHEN Lei, FAN Xing, SHI Yu, et al. Progress of electrospinning nanofibers in water treatment[J]. Guangzhou Chemistry, 2021, 46(6): 11-18,50. | |
[7] | 魏楚, 钱晓明, 钱幺, 等. 空气过滤用微纳米纤维多层梯度复合材料的制备与性能[J]. 材料科学与工程学报, 2021, 39 (4):634-639,658. |
WEI Chu, QIAN Xiaoming, QIAN Yao, et al. Preparation and properties of micro nanofiber multilayer gradient composite air filters[J]. Journal of Materials Science and Engineering, 2021, 39(4):634-639,658. | |
[8] |
LEUNG Wallace Woon-Fong, HAU Curie Wing-Yi, CHOY Hung-Faat. Microfiber-nanofiber composite filter for high efficiency and low pressure drop under nano-aerosol loading[J]. Separation and Purification Technology, 2018, 206: 26-38.
doi: 10.1016/j.seppur.2018.05.033 |
[9] | 吴佳林, 黄金婷, 杨璧玲. PLA/PET复合滤料的制备及性能研究[J]. 辽宁化工, 2019, 48(11): 1059-1021. |
WU Jialin, HUANG Jinting, YANG Biling. Preparation and properties of PLA/ PET composite filter mate-rial[J]. Liaoning Chemical Industry, 2019, 48(11): 1059-1021. | |
[10] |
李曼, 武丁胜, 李家莉, 等. 乙烯-醋酸乙烯共聚物纳米纤维网状结构黏合材料[J]. 中国塑料, 2020, 34(6):34-39.
doi: 10.19491/j.issn.1001-9278.2020.06.006 |
LI Man, WU Dingsheng, LI Jiali, et al. An Adhesive material with framework structure based on ethylene vinyl acetate copolymer nanofibers[J]. China Plastics, 2020, 34(6):34-39.
doi: 10.19491/j.issn.1001-9278.2020.06.006 |
|
[11] | 刘瑞雪, 刘太奇, 操彬彬. PVA 纳米纤维的水稳定性与夹心多层纳米复合材料的制备[J]. 高分子材料科学与工程, 2012, 28 (4): 152-159. |
LIU Ruixue, LIU Taiqi, CAO Binbin. Stabilization of poly (vinyl alcohol) nanofibers and the fibers based sandwich structure purification materia[J]. Polymeric Materials Science and Engineering, 2012, 28 (4):152-159. | |
[12] | 操彬彬, 刘太奇, 刘瑞雪. 静电喷涂制备抗菌夹心多层纳米复合材料及其抗菌性能[J]. 高分子材料科学与工程, 2012, 28 (4): 117-120. |
CAO Binbin, LIU Taiqi, LIU Ruixue. Preparation and antibacterial property of anti bacterial sandwich structure nanofiberous cleaning materia[J]. Polymeric Materials Science and Engineering, 2012, 28 (4): 117-120. | |
[13] | 魏楚, 钱晓明, 钱幺. 纳米纤维复合空气过滤材料的研究进展[J]. 化工新型材料, 2020, 48(8): 32-36,41. |
WEI Chu, QIAN Xiaoming, QIAN Yao. Research progress of nanofiber composite air filter material[J]. New Chemical Materials, 2020, 48(8): 32-36,41. | |
[14] |
JALALIAN N, NABAVI S R. Electrosprayed chitosan nanoparticles decorated on polyamide 6 electrospun nanofibers as membrane for acid fuchsin dye filtration from water[J]. Surfaces and Interfaces, 2020. DOI:10.1016/j.surfin.2020.100779.
doi: 10.1016/j.surfin.2020.100779 |
[15] |
ILIAS C, GIORGOS G, PANAGIOTIS A K, et al. The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites[J]. Polymer Testing, 2021. DOI:10.1016/J.PolymerTesting.2021.107102.
doi: 10.1016/J.PolymerTesting.2021.107102 |
[16] | CHARITOS I, GEORGOUSIS G, KONTOU E. Preparation and thermomechanical characterization of metallocene linear low-density polyethylene/carbon nanotube nanocomposites[J]. Polymer Composites, 2019, 40(S2): 1263-1273. |
[17] | 赵娜, 刘太奇, 刘瑞雪. 熔体静电纺丝法制备mLLDPE纤维的研究[J]. 新技术新工艺, 2013 (2): 94-97. |
ZHAO Na, LIU Taiqi, LIU Ruixue. Research on preparation of mLLDPE fibers by melt electrospinning technique[J]. New Technology & New Process, 2013(2): 94-97. | |
[18] |
GOPAL R, KAUR S, MA Z W, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006, 281(1): 581-586.
doi: 10.1016/j.memsci.2006.04.026 |
[19] | 刘鹏, 彭砚双, 万晔, 等. 纳米纤维素对聚偏氟乙烯复合超滤膜结构与性能的影响[J]. 合成纤维工业, 2022, 45(1):14-19. |
LIU Peng, PENG Yanshuang, WAN Ye, et al. Influence of nanocellulose on structure and properties of PVDF composite ultrafiltration membrane[J]. China Synthetic Fiber Industry, 2022, 45(1):14-19. | |
[20] |
KANAFCHIAN M, VALIZADEH M, HAGHI A K. A study on the effects of laminating temperature on the polymeric nanofiber web[J]. Korean Journal of Chemical Engineering, 2011, 28(2): 445-448.
doi: 10.1007/s11814-010-0400-7 |
[21] | 杨园园, 秦青青, 雷婷, 等. PVDF超滤膜制备及在MBR处理洗涤废水中的应用[J]. 工程塑料应用, 2022, 50(3):19-24. |
YANG Yuanyuan, QIN Qingqing, LIE Ting, et al. Preparation of PVDF ultrafiltration membrane and its application in MBR treatment of washing waste-water[J]. Engineering Plastics Application, 2022, 50(3):19-24. | |
[22] | 曹志普. 介孔Al2O3/PVDF复合中空纤维膜的制备及其性能[J]. 工业水处理, 2015, 35(5):62-66. |
CAO Zhipu. Preparation of mesoporous Al2O3/PVDF composite hollow fiber membrane and its perfor-mances[J]. Industrial Water Treatment, 2015, 35(5):62-66. |
[1] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[2] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[3] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[4] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[5] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[6] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[7] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[8] | 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51. |
[9] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[10] | 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8. |
[11] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
[12] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
[13] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[14] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[15] | 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26. |
|