纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 63-72.doi: 10.13475/j.fzxb.20220107001

• 纺织工程 • 上一篇    下一篇

基于视觉特征强化的环锭纺细纱断头在线检测方法

陈泰芳1, 周亚勤1(), 汪俊亮2, 徐楚桥3, 李冬武1   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.东华大学 人工智能研究院, 上海 201620
    3.上海交通大学 机械与动力工程学院, 上海 200030
  • 收稿日期:2022-01-28 修回日期:2022-04-30 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 周亚勤(1977—),女,副教授,博士。主要研究方向为智能制造、生产调度。E-mail:zhouyaqin@dhu.edu.cn.
  • 作者简介:陈泰芳(1998—),男,硕士生。主要研究方向为机器视觉。
  • 基金资助:
    上海市教委晨光计划资助项目(20CG41);国家工信部智能制造公共服务平台项目(2021-0173-2-1)

Online detection of yarn breakage based on visual feature enhancement and extraction

CHEN Taifang1, ZHOU Yaqin1(), WANG Junliang2, XU Chuqiao3, LI Dongwu1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Institute of Artificial Intelligence,Donghua University, Shanghai 201620, China
    3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
  • Received:2022-01-28 Revised:2022-04-30 Published:2023-08-15 Online:2023-09-21

摘要:

针对动态生产环境下纱线特征弱、纱线目标小而导致的断头检测正确率低问题,提出了一种基于视觉特征强化提取的细纱断头在线检测方法。为验证算法有效性,搭建了巡游检测装置及图像采集系统,提出了针对纱线弱特征问题的强化算子,实现对拖影纱线特征的强化;设计了针对纱线小目标问题的启发于谷底的小目标分割算法,可自适应地从强化特征后的纱线图像中准确提取纱线特征;最后利用欧拉距离判别法进行纱线断头的检测。通过采集某纺纱厂1 000张细纱图片进行实例验证,结果表明本方法检测准确率能够达到97.3%,每张图的处理时间为59.76 ms,能够实时有效地进行断头检测。

关键词: 环锭纺纱, 断头检测, 机器视觉, 形态学运算, 阈值分割, 细沙

Abstract:

Objective The yarn breakage in ring spinning directly affects the production efficiency and product quality of the yarns. At present, the commonly used automatic yarn break detection mainly employs a single spindle detection method with photoelectricity or magnetoelectricity as the core, both requiring costly modification of the spinning machine and is difficult to implement. Therefore, this paper proposes a break detection method based on machine vision, which provides a new direction for achieving low-cost and high-precision break detection.

Method An online detection method for yarn breaks based on visual feature reinforcement extraction was proposed. For the problem of difficult yarn feature extraction due to yarn trailing, a neighborhood gradient reinforcement operator was designed for yarn clustering to achieve yarn feature reinforcement. To deal with the problem that yarn targets are small and easily disturbed by environment, an Otsu small target segmentation threshold search method inspired by valley bottom was designed to achieve the segmentation of yarn and background, to extract adaptively yarn features from the yarn image after feature reinforcement, and to enable broken end detection by Euler distance discriminant method.

Results Inspection devices were installed at a textile factory in Wuxi to collect data, with 1 000 captured images selected for analyze. The factory mainly produces pure cotton high count yarns, with 400 spindles per vehicle. To verify the superiority of the weak feature enhancement proposed in this research, the proposed algorithm was compared with Retinex, homomorphic filtering, and histogram averaging for enhancement experiments. The algorithm developed in this research enhanced the yarn features and effectively suppressed the background areas based on the gradient step characteristics of the yarn (Fig. 8 (e)). Choices of different weights for neighborhood gradient reinforcement operators had different effects on the separation of yarn features and background features. In order to select the optimal weight value, this research adopts the method of controlling variables and conducts experimental comparison on the center weight value between 2 and 3. It was found that the optimal selection range of weight values was between 2.4 and 2.7. Distinct image and dim image enhancement renderings under different weight show clear and blurred images, respectively.

To verify the effectiveness of the algorithm in extracting yarn features, Otsu, Otsu with added pixel proportion weight, and Otsu threshold segmentation method inspired by valley points were applied to the images. Using this algorithm, it was demonstrated that the proposed algorithm effectively extracted yarn features and a small number of background features at the same pixel level. It was also be demonstrated that the proposed algorithm was able to search effectively for valley thresholds and achieve yarn feature extraction.

To verify the effectiveness of the feature extraction algorithm, the processing effects and detection results of the Hough transform line extraction method, LSD line detection algorithm, Sobel, Robert and Otsu combined algorithm, Linknet algorithm, and this algorithm were compared(Fig. 13). The results obtained by this algorithm were best fitted to the original image (Fig. 13 (g)).

The experimental results showed that the detection rate of this method reached 97.3% and the processing efficiency reached 59.76 ms per frame, which was carried out by collecting 1 000 spinning pictures of a spinning factory. It was evident that this method was able to effectively detect yarn breakage in real-time.

Conclusion The algorithm reported in this paper decomposes the acquisition of yarn features into two parts: reinforcement and extraction, solving the problems of yarn feature dispersion, low proportion of yarn features, and susceptibility to background noise interference in visual ring spinning breakage detection in dynamic environments. Experiments have shown that the algorithm proposed in this article can meet the real-time and accuracy requirements for factory inspection.

The algorithm currently has difficulty to identify linear noise and yarn features, as the linear filter only considers its morphological features and does not combine its color and morphology. Neural networks can solve problem effectively. In the future, the standard of industrial real-time performance can be achieved by streamlining network models and improving hardware configuration. It is necessary to study how to combine the characteristics of break detection with deep learning to achieve high-precision, robust, and efficient yard breakage detection methods.

Key words: ring spinning, yarn breakage detection, machine vision, morphological operation, threshold segmentation, spun yarn

中图分类号: 

  • TS111.8

图1

断头巡游检测小车"

图2

断头检测流程图"

图3

纱线图像分析图"

图4

邻域梯度增强算法示意图"

图5

增强后的纱线图像直方图"

图6

纱线特征提取图像"

图7

基于欧拉距离断头识别方法"

图8

特征强化方法对比"

图9

不同权重下清晰图像与模糊图像增强效果图"

图10

不同权重下清晰图像与模糊图像直方图"

图11

不同阈值分割方法提取纱线特征的效果"

图12

不同阈值分割方法分割所得阈值"

图13

各算法实验结果对比 注:1~3列分别为模糊、正常、过曝的特征图像及不同算法检测结果。"

表1

各算法断头检测结果"

方法 AACU/% TTP/% 时间/ms
Robert+Otsu 55.3 86.4 47.98
应用霍夫变换 78.4 5.1 41.96
Sobel+Otsu 54.3 79.4 57.98
LSD直线检测 37.6 63.4 3.53
Linknet 99.1 97.1 478.43
本文强化提取算法 97.3 96.1 59.76
[1] 陈根才, 章友鹤. 国内外环锭纺纱技术的发展与创新[J]. 现代纺织技术, 2011, 19(1):29-34.
CHEN Gencai, ZHANG Youhe. Development and in-novation of ring spinning technology at home and abroad[J]. Advanced Textile Technology, 2011, 19(1): 29-34.
[2] 汪军. 环锭纺纱线质量检测技术发展现状及趋势[J]. 纺织学报, 2013, 34(6):131-136.
WANG Jun. Current status and development trend of quality inspection technique of ring spun yarns[J]. Journal of Textile Research, 2013, 34(6): 131-136.
[3] 吕汉明, 吴擎擎, 吕鑫, 等. 基于数据库的环锭纺细纱机细纱断头检测与信息显示[J]. 纺织学报, 2018, 39(4):123-129.
LÜ Hanming, WU Qingqing, LÜ Xin, et al. Broken yarn monitoring and data display for ring spinning frame based on database[J]. Journal of Textile Research, 2018, 39(4): 123-129.
[4] ELDAR M. Line laser-based break sensor that detects light spots on yarns[J]. Optics & Lasers in Engineering, 2009, 47(7/8): 741-746.
[5] 王清. 一种基于线激光的实时非接触纱线断头检测方法:中国, 201611143551.9[P]. 2016-12-13.
WANG Qing. A real-time non-contact yarn breakage detection method based on line laser: China, 201611143551.9[P]. 2016-12-13.
[6] 史鹏飞, 白瑞林, 杨文浩, 等. 基于机器视觉的整经机断头检测系统[J]. 东华大学学报(自然科学版), 2011, 37(6):750-754,760.
SHI Pengfei, BAI Ruilin, YANG Wenhao, et al. Broken Yarn detection system on warping machine based on machine vision[J]. Journal of Donghua Univer-sity(Natural Science), 2011, 37(6): 750-754,760.
[7] 姚俊红. 赛络纺纱巡回式断头检测装置的设计[J]. 上海纺织科技, 2015, 43(10):88-89,93.
YAO Junhong. Design of sirospun touring beheaded detection device[J]. Shanghai Textile Science& Technology, 2015, 43(10): 88-89,93.
[8] 王雯雯, 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(4):36-41.
WANG Wenwen, LIU Jihong. Spinning breakage detection based on optimized Hough transform[J]. Journal of Textile Research, 2018, 39(4): 36-41.
[9] 孟立凡, 高文学. 一种应用FPGA的灰度投影法断头检测平台设计[J]. 现代电子技术, 2020, 43(4):4-7.
MENG Lifan, GAO Wenxue. Design of FPGA-based broken yarn detection platform using gray projection algorithm[J]. Modern Electronic Technology, 2020, 43(4): 4-7.
[10] 吴旭东, 吕汉明. 基于深度学习的细纱断头检测模型[J]. 天津纺织科技, 2020(2):42-47.
WU Xudong, LÜ Hanming. Broken yarn detection model of spinning frame based on deep learning[J]. Tianjin Textile Science & Technology, 2020(2): 42-47.
[11] 陈泰芳. 机器视觉驱动的环锭纺断纱巡游检测方法研究[D]. 上海: 东华大学, 2022:33-34.
CHEN Taifang. Research on detection method of ring spining broken yarn cauise driven by machine vision[D]. Shanghai: Donghua University, 2022:33-34.
[12] XU Li. Image smoothing via L0 gradient minimiza-tion[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1-12.
[13] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1):62-66.
[14] VON GIOI R G, JAKUBOWICZ J, MOREL J M. LSD: a line segment detector[J]. Image Processing On Line, 2012, 2: 35-55.
doi: 10.5201/ipol
[15] 孟向臻, 姜春英, 丁美杰, 等. 基于改进Otsu-Sobel的分体式炮弹缝宽视觉测量方法研究[J/OL]. 火炮发射与控制学报:1-6[2022-03-18]. http://kns.cnki.net/kcms/detail/61.1280.TJ.20211129.1913.006.html
MENG Xiangzhen, JIANG Chunying, DING Meijie, et al. Visual measurement method of gap width of split type ammunition based on improved Ostu-Sobel[J/OL]. Journal of Gun Launch & Control:1-6[2022-03-18]. http://kns.cnki.net/kcms/detail/61.1280.TJ.20211129.1913.006.html.
[16] CHAURASIA A, CULURCIELLO E. Linknet: exploiting encoder representations for efficient semantic segmentation[C]// 2017 IEEE Visual Communications and Image Processing (VCIP). New York: IEEE, 2017: 1-4.
[1] 史伟民, 韩思捷, 屠佳佳, 陆伟健, 段玉堂. 基于机器视觉的空纱筒口定位方法[J]. 纺织学报, 2023, 44(11): 105-112.
[2] 陈罡, 金贵阳, 吴菁, 罗千. 智能服装缝制关键技术及成套装备研发[J]. 纺织学报, 2023, 44(08): 197-204.
[3] 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204.
[4] 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77.
[5] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[6] 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20.
[7] 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139.
[8] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[9] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[10] 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96.
[11] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[12] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[13] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[14] 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121.
[15] 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!