纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 88-95.doi: 10.13475/j.fzxb.20220106601

• 纺织工程 • 上一篇    下一篇

复合结构经编针织电容式传感器设计及其性能

李露红, 赵博宇, 丛洪莲()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-01-28 修回日期:2022-06-29 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 丛洪莲(1976—),女,教授,博士。主要研究方向为针织生产的数字化与智能化、针织产品的创新设计与性能。E-mail:cong-wkrc@163.com
  • 作者简介:李露红(1998—),女,硕士生。主要研究方向为针织智能产品开发。
  • 基金资助:
    国家自然科学基金项目(61772238);泰山产业领军人才项目(tscy20180224)

Design and performance of warp knit capacitive sensor using silver plated PA/cotton yarns with composite structure

LI Luhong, ZHAO Boyu, CONG Honglian()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-01-28 Revised:2022-06-29 Published:2023-08-15 Online:2023-09-21

摘要:

针对柔性电容传感器制备工艺中存在的导电材料易剥落和透气性差等问题,提出一种将具有双面效应的导电针织物作为柔性电极,不同厚度经编间隔织物作为介质层的针织复合结构电容式传感器,并进行了电力学性能测试,研究其在外力作用下的灵敏度、线性度、迟滞性和重复性。结果表明:随着应力的增加,电容式传感器的灵敏度逐渐增大,介质层厚度越大,灵敏度越好;当应变小于30%时,不同规格电容式传感器均表现出良好的线性度,介质层厚度愈小,线性度越好,但随着应变继续增大,电容式传感器线性特性变差;在应力加载和卸载的过程中,电容式传感器表现出较好的压缩回复性;在不同应变值的连续压缩测试中,电容式传感器的电容输出曲线形状整体相似,电容式传感器具有较好的重复性。

关键词: 针织, 双面效应, 柔性电极, 间隔织物, 传感性能

Abstract:

Objective Knitted flexible capacitive sensors have been widely studied for their inherent softness and comfort, structural simplicity and low loss. However, most of the sensor electrode materials are exposed to the external environment or in direct contact with the human body, prone to oxidization with long-term use. Moreover, the traditional encapsulation materials used for sensors have poor air permeability, affecting the wearing comfort of human body. Therefore, a knitted composite structure capacitive sensor was proposed to place the electrodes inside the sensor to improve the sensing efficiency of the sensor and the human body experience.

Method The silver-plated conductive yarn and cotton yarn were used to prepare the double-side-effect electrode using the computerized flat knitting machine with different thickness intervals in the fabric to form the "sandwich structure" capacitive sensor. According to the formula C=(ε0εrS)/d, the change in the distance between the electrodes causes change in capacitance value so as to achieve sensing. The assembled sensor was placed on an electronic universal testing machine for compression experiments, and leads from both ends of the electrodes were connected to the TH2830 LCR digital bridge, and the values were recorded simultaneously.

Results The electro-mechanical properties, sensitivity, linearity, compression reversibility, hysteresis and repeatability of the sensor were studied and analyzed. The strain-capacitance curve of the sensor showed that with increasing compressive strain the capacitance value increased gradually, which is consistent with the mechanism elaborated in Equation (1) (Fig. 5). As important index for sensing performance, which is usually expressed as the ratio of the relative rate of change of capacitance to the stress, sensitivity of the sensor was characterized. With the gradual increase of the strain value, the sensitivity of the three different thickness sensors demonstrated a gradual increase with two different output characteristics (Fig. 6). The sensor with a thickness of 20 mm achieved a sensitivity of 0.091 kPa-1 within 15 to 50 kPa. The linearity of the sensor at each stage was tested, and it was found that the linearity became worsened as the compression distance was increased (Tab.1). It was also found that although the three thickness sensors produced the maximum height difference at the maximum compression distance, the difference was within the error range and produced useful value (Fig. 7). Hysteresis and repeatability were used to characterize the dynamic performance index of the sensor, and a 20 mm thickness sensor was selected for hysteresis study. Repetitive compression tests with different strains were performed for all thickness sensors (Fig. 8), and the capacitance curves of the output during continuous cyclic stress loading and unloading at the same strain value were consistent overall, and the capacitance output curves of the sensor with 20 mm thickness at different strain values produced less fluctuation and smoother curves. The loading and unloading curves of the sensors had a certain height difference and the maximum hysteresis error of 16.2% took place at the stress value of 8.79 kPa (Fig. 9).

Conclusion Flexible capacitive sensors of knitted composite structure were prepared by attaching double-side-effect flexible electrodes to three different thicknesses of warp knitted spacer fabrics. The sensors show two different compression output characteristics, with good linearity but lower sensitivity when the strain is in the range of 0-30%, and reduced linearity when the strain range is 30%-60%. With the increase of compression distance, the sensitivity of the sensor is improved. Among them, the larger the thickness of the dielectric layer, the greater the rate of sensitivity increase, which is expected to be applied in the field of large strain limb motion monitoring. Continuous repetitive compression electrical curves of the three different thickness capacitive sensors at different strain values show good repeatability, which also indicates that the designed sensors have good and stable sensing performance. However, the increase in thickness makes the spacer filaments less stiff against bending and increases the sensing hysteresis. This provides some suggestions for the selection of the fabric dielectric layer in the future. To further improve the durability in practical applications, it would be an interesting research to explore the one-piece double-sided effect knitted capacitive sensor in the future.

Key words: knitting, double-sided effect, flexible electrode, spacer fabric, sensing performance

中图分类号: 

  • TS181.8

图1

编织工艺图"

图2

双面效应导电织物电极的结构图"

图3

电容式传感器的制备过程示意图"

图4

压缩测试实验平台"

图5

不同厚度介质层电容式传感器的应变-电容曲线"

图6

不同厚度介质层电容式传感器的灵敏度"

表1

电容式传感器各阶段线性度及应变范围"

厚度/
mm
第1阶段 第2阶段
E1 应变/% E2 应变/%
6 0.400 10~30 1.797 40~60
9 1.560 10~30 6.448 40~60
20 1.980 10~30 2.050 40~60

图7

不同厚度介质层电容式传感器的压缩回复性"

图8

不同厚度介质层电容式传感器的重复性"

图9

电容式传感器迟滞性"

[1] 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1):16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensors[J]. Journal of Functional Materials and Devices, 2020, 26(1):16-23.
[2] KANG S B, LEE I, LEE S, et al. Highly sensitive pressure sensor based on bio inspired porous structure for realtime tactile sensing[J]. Advanced Electronic Materials, 2016.DOI:10.1002/aelm.201600356.
doi: 10.1002/aelm.201600356
[3] ZHU Jie, XUE Xiaofei, LI Jianyi, et al. Flexible pressure sensor with a wide pressure measurement range and an agile response based on multiscale carbon fibers/carbon nanotubes composite[J]. Microelectronic Engineering, 2022, 257:111750.
doi: 10.1016/j.mee.2022.111750
[4] XUE QI, SUN JINFENG, HUANG YAN, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017. DOI:10.1002/smll.201701827.
doi: 10.1002/smll.201701827
[5] 张智慧, 杨娜, 李晓燕, 等. 织物基微型电容器的柔性储能研究进展[J]. 针织工业, 2021(3):86-91.
ZHANG Zhihui, YANG Na, LI Xiaoyan, et al. Research progress on flexible energy storage of fabric-based microcapacitors[J]. Knitting Industries, 2021(3): 86-91.
[6] 熊莹, 陶肖明. 智能传感纺织品研究进展[J]. 针织工业, 2019(7):8-12.
XIONG Ying, TAO Xiaoming. Research progress of intelligent sensing textiles[J]. Knitting Industries, 2019(7): 8-12.
[7] 肖渊, 李红英, 李倩, 等. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(5):79-83.
XIAO Yuan, LI Hongying, LI Qian, et al. Preparationof flexible pressure sensors with cotton fabric/polydimethylsiloxane composite dielectric layer[J]. Journal of Textile Research, 2021, 42(5):79-83.
[8] 孙婉, 缪旭红, 王晓雷, 等. 基于经编间隔织物的压力电容传感器特性[J]. 纺织学报, 2019, 40(2):94-99.
SUN Wan, MIAO Xuhong, WANG Xiaolei, et al. Characteristics of pressure capacitive sensors based on warp knitted spacer fabrics[J]. Journal of Textile Research, 2019, 40(2):94-99.
[9] 侯丽娟, 秦会斌, 胡炜薇. 基于微结构的柔性电容式压力传感器设计与仿真研究[J]. 传感器与微系统, 2021, 40(12):66-68, 72.
HOU Lijuan, QIN Huibin, HU Weiwei. Design and simulation study of microstructure based flexible capacitive pressure sensor[J]. Sensors and Microsystems, 2021, 40(12):66-68, 72.
[10] 马建华, 毛莉莉, 李宁, 等. 针织结构柔性传感器的设计开发与应用研究[J]. 针织工业, 2021(5):72-76.
MA Jianhua, MAO Lili, LI Ning, et al. Design development and application research of flexible sensors for knitted structures[J]. Knitting Industries, 2021(5):72-76.
[11] 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5):170-176.
TIAN Mingwei, LI Zenqing, LU Yunjing, et al. Research progress on textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5):170-176.
[12] 龙海如. 电脑横机成形技术与产品现状及发展趋势[J]. 纺织导报, 2017(7):48-52.
LONG Hairu. Current status and development trend of products[J]. China Textile Leader, 2017(7):48-52.
[13] 李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7):2152-2161.
LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensors based on expandable microspheres/polydimethylsiloxane composite dielectric layer[J]. Journal of Composites, 2021, 38(7):2152-2161.
[14] 叶晓华. 功能性间隔织物的结构与性能研究[D]. 上海: 东华大学, 2007:59-60.
YE Xiaohua. Research on the structure and performance of functional spacer fabrics[D]. Shanghai: Donghua University, 2007:59-60.
[15] CHHETRY A, YOON H, PARK J Y. A flexible and highlysensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017. DOI: 10.1039/c7tc02926h.
doi: 10.1039/c7tc02926h
[16] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J]. 丝绸, 2020, 57(4):17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing performance of knitted spaced conductive fabrics[J]. Journal of Silk, 2020, 57(4):17-21.
[17] KWON D, LEE T I. SHIM J. et al. Highly sensitive,flexible,and wearable pressure sensor based on a giant piezocapacitive effect of threedimensional micro-porous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16922-16931.
[18] 张培仁. 传感器原理、检测及应用[M]. 北京: 清华大学出版社, 2012:8-13.
ZHANG Peiren. Sensor principles, detection and applic-ations[M]. Beijing: Tsinghua University Press, 2012:8-13.
[1] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[2] 孙磊, 屠佳佳, 毛慧敏, 王俊茹, 史伟民. 针织智能车间自动换筒任务调度技术[J]. 纺织学报, 2023, 44(12): 189-196.
[3] 盛晓超, 刘泽旭, 胥光申, 石英男. 线性磁悬浮织针驱动系统运动控制与实验分析[J]. 纺织学报, 2023, 44(12): 197-204.
[4] 杨美玲, 蒋高明, 王婷, 李炳贤. 基于弹簧-质点模型的单贾卡经编鞋材三维仿真[J]. 纺织学报, 2023, 44(11): 113-119.
[5] 袁汝旺, 张鹏. 间隔织物用钢筘运动路径规划及驱动机构设计[J]. 纺织学报, 2023, 44(10): 172-180.
[6] 戴宁, 梁汇江, 胡旭东, 陆哲昊, 徐开心, 袁嫣红, 屠佳佳, 曾志发. 纬编针织机编织过程中三角振动响应特性[J]. 纺织学报, 2023, 44(10): 181-187.
[7] 李玉贤, 巫晓雯, 吴光军, 丛洪莲. 针织毛衫版片的参数化设计模型与实现[J]. 纺织学报, 2023, 44(09): 168-174.
[8] 任国栋, 屠佳佳, 李杨, 邱子安, 史伟民. 基于轻量化网络和知识蒸馏的纱线状态检测[J]. 纺织学报, 2023, 44(09): 205-212.
[9] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[10] 杨美玲, 蒋高明, 王婷, 李炳贤. 经编间隔鞋材设计与三维仿真[J]. 纺织学报, 2023, 44(08): 96-102.
[11] 孙园园, 张琦, 张燕婷, 左露娇, 丁宁宇. 三维通孔结构三色三贾卡提花间隔鞋材的研发[J]. 纺织学报, 2023, 44(07): 110-115.
[12] 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71.
[13] 俞旭良, 丛洪莲, 孙菲, 董智佳. 仿猪笼草口缘结构功能针织物的设计与应用[J]. 纺织学报, 2023, 44(07): 72-78.
[14] 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94.
[15] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!