纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 9-17.doi: 10.13475/j.fzxb.20230206301

• 纤维材料 • 上一篇    下一篇

太阳能驱动多级海水淡化器件的设计及其集水率探究

蒋逸飞1, 田焰宽1, 戴俊2, 王学利1,3, 李发学1,3, 俞建勇1,3, 高婷婷1,3()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.江苏悦达棉纺有限公司, 江苏 盐城 224008
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2023-02-28 修回日期:2023-04-25 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 高婷婷(1988—),女,讲师,博士。主要研究方向为光热转换功能纺织材料的结构设计及应用。E-mail:gaott@dhu.edu.cn
  • 作者简介:蒋逸飞(1998—),男,硕士生。主要研究方向为纺织材料基太阳能驱动海水淡化器件的设计与探究。
  • 基金资助:
    国家自然科学基金项目(52003045)

Design of solar-driven multistage desalination device and investigation of water collection rate

JIANG Yifei1, TIAN Yankuan1, DAI Jun2, WANG Xueli1,3, LI Faxue1,3, YU Jianyong1,3, GAO Tingting1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Jiangsu Yueda Cotton Spinning Co., Ltd, Yancheng 224008, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2023-02-28 Revised:2023-04-25 Published:2023-08-15 Online:2023-09-21

摘要:

以太阳能驱动为主的界面光蒸汽转化技术是目前广泛使用的一种海水淡化技术,然而,以其为基础制备的海水淡化多级器件依然面临着制备方法复杂、价格昂贵、集水率不高等问题。为解决上述问题,使用廉价易得的紫铜板、碳纤维和粘胶基非织造布等材料,制备了能大幅增加光吸收率的碳纤维阵列光热层,快速供水的粘胶基非织造布水通道和蒸发层,以及快速冷凝水收集的疏水集水层,并以上述3部分为基础构筑太阳能驱动多级海水淡化器件。在确定器件最佳间距为3 mm,级数为十级之后,该器件在一个模拟太阳光照下实现了高达2.05 kg/(m2·h)的集水率。该器件充分利用了潜热实现了高效的水收集,为后续多级界面蒸发器件的设计提供了一种新的思路。

关键词: 静电植绒, 非织造布, 界面光蒸汽转换技术, 海水淡化多级器件, 水收集, 太阳能

Abstract:

Objective With low power consumption and environmental friendliness, interfacial solar-driven steam generation technology has been expected to moderate water scarcity from the explosive growth of industry and population. Based on this technology, the multistage desalination devices are prepared for high-efficient freshwater collection.

Method The 3-D carbon fiber array structure was constructed on the copper plate with excellent thermal conductivity by electrostatic flocking technology, and it was used as a photothermal layer to achieve outstanding light absorption. Non woven fabric with excellent hydrophilicity was used as a water transport channel. After the hydrophobic treatment, the copper plate acted as a water collection layer to rapidly obtain lots of freshwater. Based on the above three components, a ten-stage multistage desalination device with an inclined angle was prepared for high-efficient freshwater collection.

Results The photothermal layer, which was fabricated with carbon fiber arrays and copper plate by electrostatic flocking technology, can reach a high temperature of 78.4 ℃ for the top surface and 73.7 ℃ for the bottom surface under one-sun irradiation(Fig. 4). It shows the excellent photothermal effect and heat conduction. And it mainly benefits from the design of a three-dimensional array structure and the excellent photothermal properties of carbon fiber. It is seen that after the optimization of materials and fabric weight, the non-woven viscose fabric with 80 g/m2 can reach a wicking height of 18.1 cm within 30 min, and it spreads rapidly to 5 cm in 3 min. It has an excellent ability for water transport and diffusion, and it can continuously supply water for the photothermal layer during solar-vapor generation(Fig. 5, Fig. 7). The optimized copper plate has excellent hydrophobicity after the hydrophobic treatment. The surface of the copper plate has the shape of hierarchical porous petal-like nanostructures. The tightly packed petal-like structures increase the surface roughness of the copper plate and reduce the surface energy, to improve the surface hydrophobicity of the copper plate. At last, its water contact angle can reach 130°. Based on the above three components, firstly, a single-stage device was constructed to optimize the air gap in Fig. 10. And the highest water collection rate of 0.39 kg/(m2·h) was obtained when the air gap was 3 mm. Therefore, with an air gap of 3 mm, a ten-stage multistage desalination device can achieve a water collection rate of 2.05 kg/(m2·h)(Fig. 11). The water collection rate kept unchanged when the number of device stages was further increased.

Conclusion In our work, with low-cost and simple materials, such as copper plate, carbon fiber and non-woven fabric, a ten-stage multistage desalination device was prepared for high-efficient water collection. With excellent water transport performance, the nonwoven fabric can transport water from bulk water to every photothermal layer for evaporation. Due to the good photothermal effect, the photothermal layer can obtain a high temperature. And with outstanding heat conductivity, the photothermal layer efficiently evaporates the water of non-woven fabric to generate steam. Large amounts of steam condense on the copper sheet to form freshwater. Moreover, the hydrophobic copper plate causes the condensed water to form a waterdrop. Thus, it can reduce latent heat loss. Finally, due to the design of the inclined copper plate, the water droplets slide quickly and are collected. Our multistage seawater desalination device can provide a new idea for the design of efficient solar-driven interfacial devices. It is expected to be one of the effective ways to obtain freshwater in remote and backward areas.

Key words: electrostatic flocking, nonwoven fabric, interfacial solar-vapor conversion technology, multi-stage desalination devices, water collection, solar energy

中图分类号: 

  • TK519

图1

太阳能驱动多级海水淡化器件实物图及光蒸汽转化工作示意图"

图2

静电植绒原理示意图"

图3

紫铜板处理后的实物样"

图4

在紫铜板上进行喷涂或植绒处理后在一个模拟太阳光照下的温度变化"

图5

不同面密度的棉基、粘胶基非织造布芯吸高度红外照片 注:各小图中4个试样的面密度从左到右依次为40、60、80、100 g/m2。"

图6

不同面密度的棉基、粘胶基非织造布的芯吸高度对比图"

图7

80 g/m2的棉基、粘胶基非织造布水扩散随时间变化的红外照片"

图8

不同疏水时长下紫铜板的表面形貌及其水接触角"

图9

疏水处理前后紫铜板表面SEM照片"

图10

一级器件在不同间距下的集水率"

图11

太阳能驱动界面蒸发器件不同级数的集水率"

表1

不同多级器件工作的对比"

器件名称 光热层材料 水运输和蒸发
层材料
冷凝层材料 结构 集水率/
(kg·m-2·h-1)
参考
文献
被动式多级模块化器件 铝板-TiNOX涂层 超细合成纤维膜 聚四氟乙烯膜 水平平行结构 2.07 [4]
紧凑型膜蒸馏多级器件 铝合金-陶瓷涂层 聚乙烯醇海绵 聚偏氟乙烯-六氟丙烯膜 水平平行结构 1.02 [15]
热集中多级蒸馏器件 铜盘-CrAlO涂层 棉纤维膜 铜片 同心圆结构 2.20 [16]
光伏多级蒸馏器件 太阳能电池片 纤维素纸巾 铝板 水平平行结构 2.03 [22]
多级被动太阳能器件 铝板-炭黑 商业用亲水织物 聚四氟乙烯膜 水平平行结构 1.70 [23]
仿生树状多级器件 紫铜板-碳纤维 粘胶基非织造布 疏水紫铜板 屋顶型平行结构 2.05 本文工作
[1] PANCHAL H, SHAH P K. Investigation on solar stills having floating plates[J]. International Journal of Energy and Environmental Engineering, 2012, 3(1): 3-8.
doi: 10.1186/2251-6832-3-3
[2] 石虹. 浅谈全球水资源态势和中国水资源环境问题[J]. 水土保持研究, 2002, 9(1): 145-150.
SHI Hong. The state of global water resource and the problems of water environment in China[J]. Soil and Water Conservation Research, 2002, 9(1): 145-150.
[3] ALI M T, FATH H E S, ARMSTRONG P R. A comprehensive technoeconomical review of indirect solar desalination[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4187-4199.
doi: 10.1016/j.rser.2011.05.012
[4] CHIAVAZZO E, MORCIANO M, VIGLINO F, et al. Passive solar high-yield seawater desalination by modular and low-cost distillation[J]. Nature Sustainability, 2019, 1(12): 763-772.
doi: 10.1038/s41893-018-0186-x
[5] 刘小钰, 汪路, 张智勇, 等. 界面太阳能蒸发的应用研究进展[J]. 材料导报, 2022, 36(19): 5-20.
LIU Xiaoyu, WANG Lu, ZHANG Zhiyong, et al. Research progress of the applications of lnterfacial solar steam generation[J]. Materials Guide, 2022, 36(19): 5-20.
[6] 凌童, 段慧玲, 闫煜杰, 等. 太阳能界面蒸发的应用综述[J]. 分布式能源, 2021, 6(3): 1-9.
LING Tong, DUAN Huiling, YAN Yujie, et al. Review on application of solar interfacial evaporation[J]. Distributed Energy, 2021, 6(3): 1-9.
[7] TIAN Y K, LI Y J, ZHANG X Y, et al. Breath-figure self-assembled low-cost janus fabrics for highly efficient and stable solar desalination[J]. Advanced Functional Materials, 2022. 10.1002/adfm.202113258.
[8] MOHAN I, YADAV S, PANCHAL H, et al. A review on solar still: a simple desalination technology to obtain potable water[J]. International Journal of Ambient Energy, 2017, 40(3): 335-342.
doi: 10.1080/01430750.2017.1393776
[9] NI G, MILJKOVIC N, GHASEMI H, et al. Volumetric solar heating of nanofluids for direct vapor genera-tion[J]. Nano Energy, 2015, 17: 290-301.
doi: 10.1016/j.nanoen.2015.08.021
[10] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.
doi: 10.1093/nsr/nwz030
[11] LUO X, SHI J C, ZHAO C Y, et al. The energy efficiency of interfacial solar desalination[J]. Applied Energy, 2021. 10.1016/j.apenergy.2021.117581.
[12] FANG J, LIU Q L, ZHANG W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. Journal of Materials Chemistry A, 2017, 5(34): 17817-17821.
doi: 10.1039/C7TA05976K
[13] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014. 10.1038/ncomms5449.
[14] XU Z Y, ZHANG L N, ZHAO L, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J]. Energy & Environmental Science, 2020, 13(3): 830-839.
[15] XUE G B, CHEN Q, LIN S Z, et al. Highly efficient water harvesting with optimized solar thermal membrane distillation device[J]. Global Challenges, 2018. 10.1002/gch2.201800001.
[16] HUANG L, JIANG H F, WANG Y P, et al. Enhanced water yield of solar desalination by thermal concentrated multistage distiller[J]. Desalination, 2020. 10.1016/j.desal.2019.114260.
[17] WANG Z X, HORSEMAN T, STRAUB A P, et al. Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 2019. 10.1126/sciadv.aax0763.
[18] GUAN W X, GUO Y H, YU G H, et al. Carbon materials for solar water evaporation and desalina-tion[J]. Small, 2021. 10.1002/smll.202007176.
[19] SHI Y, LI R Y, JIN Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013
[20] ZHANG L N, XU Z Y, ZHAO L, et al. Passive, high-efficiency thermally-localized solar desalination[J]. Energy & Environmental Science, 2021, 14(4): 1771-1793.
[21] CHENG S A, LI Y H, JIN B C, et al. Designing salt transmission channel of solar-driven multistage desalination device for efficient and stable freshwater production from seawater[J]. Desalination, 2022. 10.1016/j.desal.2022.115688.
[22] WANG L P, SUN T Y, TANG J B, et al. Photovoltaic-multistage desalination of hypersaline waters for simultaneous electricity, water and salt harvesting via automatic rinsing[J]. Nano Energy, 2021. 10.1016/j.nanoen.2021.106163.
[23] SHAO Y, SEHN A Q, LI N B, et al. Marangoni effect drives salt crystallization away from the distillation zone for large-scale continuous solar passive desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30324-30331.
[1] 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
[2] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[3] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[4] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[5] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[6] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[7] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[8] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[9] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[10] 金关秀, 祝成炎. 基于图像模拟和支持向量机的复合非织造布孔隙尺寸预测[J]. 纺织学报, 2022, 43(12): 75-81.
[11] 韩宜君, 许君, 畅琪琪, 张诚. 纺织基柔性染料敏化太阳能电池的研究进展[J]. 纺织学报, 2022, 43(05): 185-194.
[12] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[13] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[14] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[15] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!