纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 11-19.doi: 10.13475/j.fzxb.20220309601

• 纤维材料 • 上一篇    下一篇

再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能

姚双双1,2, 付少举1,2, 张佩华1,2(), 孙秀丽3   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.东华大学 纺织学院, 上海 201620
    3.北京大学人民医院 妇产科, 北京 100044
  • 收稿日期:2022-03-29 修回日期:2022-10-12 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 张佩华(1962—),女,教授,博士。主要研究方向为纺织生物材料与技术。E-mail:phzh@dhu.edu.cn
  • 作者简介:姚双双(1997—),女,硕士生。主要研究方向为再生丝素静电纺材料。
  • 基金资助:
    国家自然科学基金项目(82171615);高等学校学科创新引智计划资助项目(B07024)

Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation

YAO Shuangshuang1,2, FU Shaoju1,2, ZHANG Peihua1,2(), SUN Xiuli3   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. Department of Gynaecology and Obstetrics, Peking University People's Hospital, Beijing 100044, China
  • Received:2022-03-29 Revised:2022-10-12 Published:2023-09-15 Online:2023-10-30

摘要:

为进一步提升取向纳米纤维膜在纺织生物医学领域的应用潜力,以再生丝素蛋白(RSF)和聚乙烯醇(PVA)为原料,通过静电纺丝制备取向纳米纤维膜。通过单因子及正交试验确定最优纺丝参数,并对取向纳米纤维膜的形貌、化学结构、力学性能、热稳定性能等进行研究。结果表明:静电纺丝最优纺丝参数为选甲酸为溶剂,滚筒转速2 400 r/min,纺丝液质量浓度0.16 g/mL,纺丝电压23 kV,出液速度0.6 mL/h,接收距离17 cm;RSF与PVA之间存在一定相互作用,使RSF中部分无规结构向α螺旋结构转变;与相同纺丝时间下得到的无取向纳米纤维膜相比,取向纳米纤维膜的特点为断裂强力更高,是无取向纳米纤维膜的2倍以上,孔径更大,集中在0.5 μm附近;取向结构对纳米纤维膜热稳定性基本无影响。

关键词: 取向纳米纤维膜, 静电纺丝, 再生丝素蛋白, 聚乙烯醇

Abstract:

Objective Non-oriented nanofiber membranes are usually obtained on the receiving device due to instable movement of polymer jet in electrospinning. Oriented nanofiber membranes are obtained by changing the receiving device and other methods.Compared with non-oriented nanofiber membranes,oriented nanofiber membranes have the advantages of regular fiber arrangement and good mechanical properties. The paper proposes the preparation of oriented nanofiber membranes by electrospinning with regenerated silk fibroin (RSF) and polyvinyl alcohol (PVA) as raw materials,and potential applications of oriented nanofiber membranes in the field of textile biomedicine.

Method The optimal spinning parameters were determined by single factor experiment and orthogonal experiment,and the morphology,chemical structure,mechanical properties,thermal stability,pore size distribution of oriented nanofiber membranes were studied with the assistance of scanning electron microscopes,Fourier transform infrared spectrometer,medical multi-function strength tester,synchronous thermal analyzer,and porous material pore size analyzer.

Results Based on the nanofiber membrane morphology obtained from single factor experiment and orthogonal experiment (Fig. 1,Tab. 2 and Fig. 2),it was evident that the optimal electrospinning parameters for preparing RSF/PVA blended oriented nanofiber membranes were as follows, formic acid as the solvent,roller speed of 2 400 r/min,spinning fluid concentration of 0.16 g/mL,spinning voltage of 23 kV,outflow velocity of 0.6 mL/h,and receiving distance of 17 cm.Under these parameters,the oriented nanofiber membranes demonstrated regular morphology and high orientation (Fig. 3 and Tab. 3). It can be seen from the infrared spectra of RSF power,PVA grain and RSF/PVA oriented fiber membranes (Fig. 4) that compared with RSF powder,part of amorphous structure in the oriented nanofiber membranes was transformed into the ɑ helix structure. The stretching effect of the high-speed roller on the fiber was conductive to improving the degree of orientation and crystallinity of nanofiber membranes,thus the breaking strength of the oriented nanofiber membranes obtained under the same spinning time was more than two times that of the non-oriented nanofiber membranes, but the elongation rate at break was lower than that of the latter (Tab. 4).The oriented and non-oriented nanofiber membranes almost coincide,and both begin to decompose at 284 ℃ with their thermal decomposition rates fastest at 312 ℃ (Fig.7),indicating that the thermal stability of the oriented and non-oriented nanofiber membranes was similar,and the stretching and alignment of fibers by the high-speed roller had substantially no effect on the thermal stability of RSF/PVA nanofiber membranes.The pore sizes of oriented and non-oriented nanofiber membranes were distributed in 0.46-1.50 μm and 0.08-0.48 μm, respectively,and were concentrated near 0.5 μm and 0.1 μm, respectively,indicating that oriented nanofiber membranes had larger pore sizes and were expected to be used in the field of textile biomedicines.

Conclusion RSF and PVA were electrospinned into oriented nanofiber membranes.The optimal spinning parameters were determined by single-factor experiment and orthogonal experiment,and the morphology,chemical structure, mechanical properties and thermal stability of nanofiber membranes were studied. The experimental results showed that part of the amorphous structure in the oriented nanofiber membranes was transformed into the ɑ helix structure; and the oriented nanofiber membranes had higher strength than the non-oriented nanofiber membranes,but had lower elongation at break under the same spinning time. And the pore sizes in the oriented nanofiber membranes were larger than that of the non-oriented ones and the oriented structure has substantially no effect on the thermal stability of the nanofiber membranes. The experimental results provided a theoretical basis for further enhancing the application potential of oriented nanofiber membranes in the field of textile biomedicine.

Key words: oriented nanofiber membrane, electrostatic spinning, regenerated silk fibroin, polyvinyl alcohol

中图分类号: 

  • TS101.4

图1

纺丝工艺参数对纳米纤维膜形貌的影响"

表1

正交试验因素水平表"

水平 A
质量浓度/
(g·mL-1)
B
电压/kV
C
出液速度/
(mL·h-1)
D
接收距离/
cm
1 0.15 23 0.4 15
2 0.16 24 0.6 16
3 0.17 25 0.8 17

表2

正交试验结果分析表"

样品
编号
A
B
C D 直径/
μm
直径
CV值
45°~135°取向
纤维占比/%
70°~110°取向
纤维占比/%
1# 1 1 1 1 0.21 0.41 80 48
2# 1 2 2 2 0.16 0.40 88 52
3# 1 3 3 3 0.14 0.38 70 42
4# 2 1 2 3 0.25 0.31 90 56
5# 2 2 3 1 0.27 0.30 84 56
6# 2 3 1 2 0.29 0.33 84 22
7# 3 1 3 2 0.52 0.23 52 26
8# 3 2 1 3 0.18 0.38 90 60
9# 3 3 2 1 0.44 0.58 46 20
直径 K1 0.51 0.98 0.68 0.92 优选工艺A1B3C3D3
K2 0.81 0.61 0.85 0.97
K3 1.14 0.87 0.93 0.57
R 0.63 0.37 0.25 0.40
直径
CV值
K1 1.19 0.95 1.12 1.29 优选工艺A3B1C3D2
K2 0.94 1.08 1.29 0.96
K3 1.19 1.29 0.91 1.07
R 0.25 0.34 0.38 0.33
45°~135°
取向纤维
占比
K1 238 222 254 210 优选工艺A2B1C2D3;A3B2C1D3
K2 258 262 224 224
K3 188 200 206 250
R 67 62 48 40
70°~110°
取向纤维
占比
K1 142 130 130 124 优选工艺A3B2C1D3
K2 134 168 128 100
K3 105 84 124 158
R 37 84 6 58

图2

正交试验制备的纳米纤维膜形貌"

图3

取向与无取向纳米纤维膜表面形貌"

表3

纳米纤维直径与不同取向占比测量结果"

样品名称 直径/
μm
直径
CV值
45°~135°取向
纤维占比/%
70°~110°取向
纤维占比/%
取向
纳米纤维膜
0.25 0.31 90 56
无取向
纳米纤维膜
0.15 0.30 66 14

图4

RSF粉末、PVA颗粒和RSF/PVA取向纳米纤维膜的红外光谱图"

图5

取向与无取向纳米纤维膜的厚度与面密度"

表4

取向和无取向纳米纤维膜的力学性能"

样品名称 断裂强力/N 断裂伸长率/%
取向纳米纤维膜 1.96±0.37 5.14±1.75
无取向纳米纤维膜 0.87±0.05 12.61±5.08

图6

取向和无取向纳米纤维膜TG与DTG曲线"

图7

取向与无取向纳米纤维膜孔径分布"

[1] NASCIMENTO M L, ARAÚJO E S, CORDEIRO E R, et al. A literature investigation about electrospinning and nanofibers:historical trends,current status and future challenges[J]. Recent Pat Nanotechnol, 2015, 9(2):76-85.
doi: 10.2174/187221050902150819151532
[2] 尹静, 高璐璐, 徐岚. 静电纺丝装置及其力学机理研究进展[J]. 力学与实践, 2021, 43(4):489-505.
YIN Jing, GAO Lulu, XU Lan. Electrospinning device and its mechanical mechanism research progress[J]. Mechanics and Practice, 2021, 43 (4):489-505.
[3] 马玥珑, 李佳, 王虹. 静电纺丝制备载药纳米纤维的研究进展[J]. 哈尔滨理工大学学报, 2021, 26(5):130-140.
MA Yuelong, LI Jia, WANG Hong. Progress in preparation of drug-borne nanofibers[J]. Journal of Harbin University of Science and Technology, 2021, 26(5):130-140.
[4] 高原, 张佩华. 基于静电纺丝法制备PPDO纳米纤维膜的影响参数[J]. 东华大学学报(自然科学版), 2021, 47(3):37-42.
GAO Yuan, ZHANG Peihua. Influence parameters of PPDO nanofiber membrane prepared by electrostatic spinning method[J]. Journal of Donghua Univer-sity (Natural Science), 2021, 47(3):37-42.
[5] 岳青, 王绍德, 徐飞, 等. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(S1):594-599.
YUE Qing, WANG Shaode, XU Fei, et al. Electrospinning technology and its application in various fields[J]. Material Guide, 2021, 35 (S1):594-599.
[6] 李霖, 张旭, 曲飏, 等. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(S1):89-93.
LI Lin, ZHANG Xu, QU Yang, et al. Research progress in electrospinning technology and device[J]. Material Guide, 2019, 33 (S1):89-93.
[7] 陈艳春, 鲁瑶, 管俊杰, 等. PP/PLA盆底复合补片的制备与性能[J]. 东华大学学报(自然科学版), 2014, 40(6):687-691.
CHEN Yanchun, LU Yao, GUAN Junjie, et al. Preparation and performance of PP/PLA[J]. Journal of Donghua University (Natural Science), 2014, 40 (6):687-691.
[8] 高璐璐, 徐岚. 批量制备静电纺有序纳米纤维的研究进展[J]. 现代纺织技术, 2021, 29(2):7-21.
GAO Lulu, XU Lan. Progress in batch preparation of electrospinning-ordered nanofibers[J]. Advanced Textile Technology, 2021, 29 (2):7-21.
[9] 罗军. 三种不同溶剂静电纺丝素纳米纤维的研究进展[J]. 化纤与纺织技术, 2011, 40(3):28-32,36.
LUO Jun. Progress of three different electrospin nanofibers in solvents[J]. Chemical Fiber and Textile Technology, 2011, 40 (3):28-32,36.
[10] 施成东, 于淑艳, 李从举. 电纺纳米纤维取向对其特性的影响[J]. 精细化工, 2020, 37(12):2426-2434.
SHI Chengdong, YU Shuyan, LI Congju. Effect of electrospinning nanofibers orientation on their proper-ties[J]. Fine Chemicals, 2020, 37 (12):2426-2434.
[11] ROBINSON A J, PÉREZ-NAVA A, ALI S C, et al. Comparative analysis of fiber alignment methods in electrospinning[J]. Matter, 2021, 4(3):821-844.
doi: 10.1016/j.matt.2020.12.022 pmid: 35757372
[12] WANG Y, GUO J, ZHOU L, et al. Design,fabrication,and function of silk-based nanomaterials[J]. Advanced Functional Materials, 2018.DOI:10.1002/adfm.201805305.
[13] LU S, TANG X, LU Q, et al. In vitro and in vivo degradation of silk fibers degu mmed with various sodium carbonate concentrations[J]. Materials Today Co mmunications, 2021.DOI:10.1016/j.mtcomm.2021.102369.
[14] ZHU Y, GU P, WAN H, et al. SuFEx modification of silk fibroin silicon aerogel and its adsorption behavior and antibacterial performance[J]. Chemosphere, 2022.DOI:10.1016/j.chemosphere.2021.132291.
[15] 王宗乾, 杨海伟, 汤立洋, 等. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11):14-19,26.
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of filin protein / polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018, 39 (11):14-19,26.
[16] 郭虹. 盆底修复用丝素蛋白复合补片的制备与性能研究[D]. 上海: 东华大学, 2021:31-32.
GUO Hong. Preparation and performance study of filin protein composite mesh for pelvic floor repair[D]. Shanghai: Donghua University, 2021:31-32.
[17] MING J. ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012, 125(3):2148-2154.
doi: 10.1002/app.v125.3
[18] 胡颜刚, 张念, 李桥, 等. 红外光谱法测定聚乙烯醇结晶度的研究[J]. 工程塑料应用, 2014, 42(9):73-77.
HU Yangang, ZHANG Nian, LI Qiao, et al. Study on deter mining the crystallinity of polyvinyl alcohol by infrared spectroscopy[J]. Engineering Plastics Applications, 2014, 42 (9):73-77.
[19] 于海洋, 王昉, 刘其春, 等. 新型丝素蛋白膜的结构和热分解动力学机理[J]. 物理化学学报, 2017, 33(2):344-355.
YU Haiyang, WANG Fang, LIU Qichun, et al. Structure and thermal decomposition kinetics of new filesin protein membranes[J]. Journal of Physical Chemistry, 2017, 33(2):344-355.
[20] 林永佳, 杨董超, 张佩华, 等. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(7):13-18.
LIN Yongjia, YANG Dongchao, ZHANG Peihua, et al. Preparation of mixed nanofiber films and properties of regenerated filin protein/decellulated dermal matrix[J]. Journal of Textile Research, 2019, 40 (7):13-18.
[21] CHEN Z, NI S, HAN S, et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages[J]. Nanoscale, 2017, 9(2):706-718.
doi: 10.1039/c6nr06421c pmid: 27959374
[1] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[2] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[3] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[4] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[5] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[6] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[7] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[8] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[9] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[10] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[11] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[12] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[13] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[14] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[15] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!