纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 116-123.doi: 10.13475/j.fzxb.20220800301
LI Jingzi1, LOU Mengmeng1, HUANG Shiyan1, LI Fang1,2()
摘要:
为促进金属有机骨架(MOF)在印染废水处理中的应用,采用真空抽滤法制备了高性能金属有机骨架/石墨烯光热复合材料,通过界面蒸发方式对印染废水进行再生利用。利用扫描电子显微镜、X射线衍射仪和紫外-可见-近红外漫反射光谱仪等手段,对膜材料进行微观结构和光学性能的表征,研究了膜光热性能及废水光热蒸发性能。结果表明:沸石咪唑酯骨架材料ZIF-8改变了石墨烯微观构造并提高了光热转换效率,1个模拟太阳光下,膜表面温度升至97.6 ℃;印染废水再生处理结果显示,在1.0 kW/m2的光照下,纯水的蒸发速率可达1.34 kg/(m2·h),光热利用率为91.2%,对废水中有机污染物、色度及盐分的截留超过99.6%;复合膜性能稳定,重复使用7次后通量仍无明显降低。通过MOF简单地修饰石墨烯材料,显著提升了二维碳基材料的光热性能,具有较好的印染废水处理应用前景。
中图分类号:
[1] | 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113. |
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113. | |
[2] | XU D, LIANG H, ZHU X, et al. Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114503. |
[3] |
MAO X, YUAN S, FALLAHPOUR N, et al. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12003-12011.
doi: 10.1021/es301711a |
[4] |
AAZAM E S, MOHAMED R M. Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide[J]. Journal of Alloys and Compounds, 2013, 577: 550-555.
doi: 10.1016/j.jallcom.2013.06.167 |
[5] |
CHO D W, JEON B H, CHON C M, et al. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 60-66.
doi: 10.1016/j.jiec.2015.01.023 |
[6] |
WANG Z B, NI D, SHANG Y L, et al. Recycling of dye from wastewater using a ceramic membrane modified with bismuth/stibium co-doped tin dioxide[J]. Journal of Cleaner Production, 2019, 213: 192-198.
doi: 10.1016/j.jclepro.2018.12.159 |
[7] | LONG Q, ZHANG Z, QI G, et al. Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2512-2522. |
[8] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42(12): 166-173. | |
[9] | 李元臻, 周佩蕾, 王菲, 等. 太阳能界面蒸发光热材料的研究进展[J]. 现代化工, 2021, 41(8): 29-32. |
LI Yuanzhen, ZHOU Peilei, WANG Fei, et al. Research progress on photothermal materials for solar energy interface evaporation[J]. Modern Chemical Industry, 2021, 41(8): 29-32. | |
[10] | 韩传龙, 李益飞, 张卫康, 等. 多功能木材表面太阳能海水淡化装置性能的研究[J]. 表面技术, 2021, 50(8): 74-83. |
HAN Chuanlong, LI Yifei, ZHANG Weikang, et al. Performance of solar seawater desalination device of multi-functional wood surface[J]. Surface Technology, 2021, 50(8): 74-83. | |
[11] |
郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596.
doi: 10.7536/PC180908 |
GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596.
doi: 10.7536/PC180908 |
|
[12] | WANG Y, ZHANG L, WANG P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evapora-tion[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1223-1230. |
[13] |
WANG X Y, XUE J, MA C, et al. Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation[J]. Journal of Materials Chemistry A, 2019, 7(28): 16696-16703.
doi: 10.1039/C9TA02210D |
[14] |
LI R, ZHANG L, SHI L, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759.
doi: 10.1021/acsnano.6b08415 |
[15] | FAN Y, BAI W, MU P, et al. Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam genera-tors[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2019.110347. |
[16] |
KIRIARACHCHI H D, AWAD F S, HASSAN A A, et al. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment[J]. Nanoscale, 2018, 10(39): 18531-18539.
doi: 10.1039/c8nr05916k pmid: 30221298 |
[17] | ZHU M, LI Y, CHEN F, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201701028. |
[18] | HAN S, YANG J, LI X, et al. Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13229-13238. |
[19] |
LIU X, WANG X, HUANG J, et al. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid[J]. Applied Energy, 2018, 220: 302-312.
doi: 10.1016/j.apenergy.2018.03.097 |
[20] | 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123. |
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123. | |
[21] | 李庆, 陈灵辉, 李丹, 等. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195. |
LI Qing, CHEN Linghui, LI Dan, et al. Research progress in photocatalytic degradation of dyes using metal-organic frameworks[J]. Journal of Textile Research, 2021, 42(12): 188-195. | |
[22] |
ZHENG Y Y, LI C X, DING X T, et al. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode[J]. Chinese Chemical Letters, 2017, 28(7): 1473-1478.
doi: 10.1016/j.cclet.2017.03.014 |
[23] |
XING X, ZHANG X, ZHANG K, et al. Preparation of large-sized graphene from needle coke and the adsorption for malachite green with its graphene oxide[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(2): 97-105.
doi: 10.1080/1536383X.2018.1512099 |
[24] | DU P D, HIEU N T, THIEN T V. Ultrasound-assisted rapid ZIF-8 synthesis, porous ZnO preparation by heating ZIF-8, and their photocatalytic activity[J]. Journal of Nanomaterials, 2021. DOI: 10.1155/2021/9988998. |
[25] | HAN X, BESTEIRO L V, KOH C S L, et al. Intensifying heat using MOF-isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202008904. |
[26] | IRSHAD M S, ARSHAD N, WANG X. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2021. DOI: 10.1002/gch2.202000055. |
[1] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
[2] | 刘其霞, 张天昊, 季涛, 葛建龙, 单浩如. 锆基金属有机骨架材料/活性碳纤维复合材料的制备及其降解性能[J]. 纺织学报, 2023, 44(09): 134-143. |
[3] | 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166. |
[4] | 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157. |
[5] | 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75. |
[6] | 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140. |
[7] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[8] | 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70. |
[9] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[10] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[11] | 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166. |
[12] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
[13] | 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120. |
[14] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[15] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
|