纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 153-160.doi: 10.13475/j.fzxb.20220810601

• 染整与化学品 • 上一篇    下一篇

棉织物的硅溶胶/短链含氟聚丙烯酸酯复合拒水整理

杜姗1, 魏云航1, 谭宇浩1, 吴婷2, 李勇2, 杨红英1,3, 王明4,5, 周伟涛2,3()   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.中原工学院 纺织服装产业研究院, 河南 郑州 451191
    3.中原工学院 郑州市绿色染整技术重点实验室, 河南 郑州 451191
    4.东华大学 生态纺织教育部重点实验室, 上海 201620
    5.河南工程学院 化工与印染工程学院, 河南 郑州 450007
  • 收稿日期:2022-08-22 修回日期:2023-06-17 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 周伟涛(1981—),男,副教授,博士。主要研究方向为纺织材料表界面性能研究及功能整理。E-mail:weitao.zhou@zut.edu.cn
  • 作者简介:杜姗(1984—),女,讲师,博士。主要研究方向为功能性纺织材料。
  • 基金资助:
    河南省青年骨干教师计划项目(2021GGJS108);河南省重点研发与推广专项(科技攻关)项目(212102210550);河南省高等学校重点科研项目(22A540002);东华大学生态纺织教育部重点实验室开放课题项目(2232021G-04);中原工学院“学科青年硕导培育计划”项目(SD202219)

Water-repellent finishing of cotton fabrics with silica sol and short-chain fluorinated polyacrylic ester

DU Shan1, WEI Yunhang1, TAN Yuhao1, WU Ting2, LI Yong2, YANG Hongying1,3, WANG Ming4,5, ZHOU Weitao2,3()   

  1. 1. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Institute of Textile and Garment Industry, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Zhengzhou Key Laboratory of Green Dyeing & Finishing Technology, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    5. College of Chemical and Dyeing-Printing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2022-08-22 Revised:2023-06-17 Published:2023-09-15 Online:2023-10-30

摘要:

为实现棉织物绿色环保拒水整理,利用硅溶胶和短链含氟聚丙烯酸酯对棉织物进行复合整理和工艺优化,赋予棉织物优异的拒水性。探讨了硅溶胶用量、短链含氟聚丙烯酸酯质量浓度、浸渍时间、预烘温度、烘焙温度和烘焙时间等因素对棉织物拒水效果的影响,得到其最佳整理工艺为:硅溶胶用量0.3%(o.w.f),短链含氟聚丙烯酸酯质量浓度30 g/L,浸渍时间20 min,预烘温度80 ℃,170 ℃焙烘2 min。利用扫描电子显微镜、傅里叶红外光谱仪、热重分析仪对整理后棉织物的表面形貌和结构进行分析,并通过表面接触角测试仪及织物风格仪测试其表面润湿性、耐酸碱性和风格变化。结果表明:复合整理后棉织物表面形成硅溶胶/短链含氟聚丙烯酸酯疏水层,最大接触角为155.6°,经50次洗涤后,接触角仍大于90°;对强酸(pH值为3)和强碱(pH值为12)液滴的接触角分别可达100°和93°,具有良好的耐酸碱性;整理后棉织物折皱回复率提升约20%,热稳定性及柔软度也略有改善。

关键词: 拒水整理, 短链含氟聚丙烯酸酯, 硅溶胶, 润湿性, 织物风格

Abstract:

Objective Water-repellent cotton fabrics have attracted widespread attention because of their exceptional innovative functionality and promising applications. However, the poor adhesion of particles to construct roughness and the refractory fluorinated finishing agents with the carbon atom number greater than 8 lead to poor washing durability and environmental pollution. Therefore, a novel eco-friendly short-chain acrylate polymer-based coating with silica gel was developed to endow cotton fabrics with superior water-repellent performance, washing durability and acid-alkali resistance.

Method In this coating system, silica gel and short-chain fluorinated polyacrylic acid were introduced into the cotton fabric through facile chemical reaction for achieving high water-repellent performance. The process to obtain hydrophobic cotton fabric was optimized. The obtained hydrophobic cotton fabric was next characterized by Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry (TG) for its surface morphology and structure. The application properties were investigated by surface contact angle, acid and alkali resistance and fabric style tests.

Results The critical process parameters, such as silica sol concentration, short-chain fluorinated polyacrylate concentration, pre-baking temperature and baking temperature, were investigated on the repellency of cotton fabrics. The optimal process conditions were determined as follows: 0.3% (o.w.f) of silica sol, 30 g/L of short chain fluorinated polyacrylic ester, 20 min of soaking time, 80 ℃ of pre-baking temperature and baking at 170 ℃ for 2 min (Fig. 1). With such optimal process, the cotton fabric exhibited hydrophobic character of the surface (water contact angle changed from 42° to 155.6°, Fig. 2). Surface morphology characterized by SEM indicated acrylate polymer possessing preferable film form ability, beneficial to reduce the surface tension and to improve water repellency (Fig. 3). With the presence of Si—O—Si group and C—F group (Fig. 4), the improved water repellency was verified to be due to the introduction of silica gel and short-chain fluorinated polyacrylic acid. Thermogravimetric analysis (Fig. 6 and Tab. 1) also confirmed the introduction of silica gel and short-chain fluorinated polyacrylic acid, which was consistent with the IR results. The obtained hydrophobic cotton fabric demonstrated superior water durability, with water contact angle greater than 90°, even after 50 washing cycles (Fig. 7). In neutral solutions, cotton fabric exhibited the best hydrophobic effect, with water contact angle of 155.6°. This hydrophobic performance appeared some diminution with acid/basic enhancement. With the action of strong acids (pH=3) and alkalis (pH=12), the finishing cotton fabric still exhibited hydrophobic property, with water contact angles at 100° and 93°, respectively. Although hydrophobic finishing of cotton fabric caused a slight decrease in drapability, elasticity and smoothness, the crease recovery rate of cotton fabric was greatly improved (Tab. 2). This greatly compensated for the deficiency of cotton fabric.

Conclusion Under neutral conditions, the contact angle of the water-repellent cotton fabric could reach 155.6° with superior thermal stability, softness and crease recovery. After 50 washing cycles and acid-alkali reaction, the water contact angles were still greater than 90°, indicating superior hydrophobicity. Meanwhile, the finishing process has little influence on the fabric style, apart from the improved crease recovery. This eco-friendly short-chain acrylate polymer-based coating with silica gel provides a new strategy for fabricating green water repellency systems without using scarcely degradable materials but with superior water repellency, washing durability and acid-alkali tolerance.

Key words: water-repellent finishing, short-chain fluorinated polyacrylate, silica sol, wettability, fabric style

中图分类号: 

  • TS195.5

图1

复合拒水整理工艺参数对棉织物表面接触角的影响"

图2

最佳复合拒水工艺整理前后棉织物的润湿性"

图3

最佳复合拒水工艺整理前后棉纤维表面形貌"

图4

非最佳复合拒水整理工艺条件下棉纤维表面形貌"

图5

复合拒水整理前后棉织物的红外光谱图"

图6

复合拒水整理前后棉织物的热重曲线"

表1

复合拒水整理前后棉织物的热重特征参数"

样品名称 起始
温度 /℃
分解
温度 /℃
终止
温度 /℃
质量
残留率/%
原棉织物 299.5 373.9 405.5 1.61
拒水棉织物 267.5 380.5 409.3 7.62

图7

复合拒水整理棉织物的耐水洗性能"

图8

复合拒水整理棉织物表面的耐酸碱性"

表2

复合拒水整理前后棉织物的风格特征值"

样品名称 悬垂性 硬挺度 柔软度 光滑度 折皱
回复率/%
原棉织物 25.48 27.89 74.70 70.76 55.85
拒水棉织物 24.03 25.88 76.07 67.61 66.41
[1] WEI D W, WEI H Y, GAUTHIER A C, et al. Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(1):1-15.
doi: 10.1016/j.jobab.2020.03.001
[2] FARUK M O, AHMED A, JALIL M A, et al. Functional textiles and composite based wearable thermal devices for joule heating: progress and perspectives[J]. Applied Materials Today, 2021.DOI.org/10.1016/j.apmt.2021.101025.
[3] ZHANG A N, ZHAO H B, CHENG J B, et al. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics[J]. Chemical Engineering Journal, 2021.DOI.org/10.1016/j.cej.2020.128361.
[4] KE W T, CHIU H L, LIAO Y C, et al. Multifunctionalized cellulose nanofiber for water-repellent and wash-sustainable coatings on fabrics[J]. Langmuir, 2020, 36(28): 8144-8151.
doi: 10.1021/acs.langmuir.0c01145
[5] SAMYN P, SCHOUKENS G, STANSSENS D, et al. Hydrophobic waterborne coating for cellulose containing hybrid organic nanoparticle pigments with vegetable oils[J]. Cellulose, 2013, 20(5): 2625-2646.
doi: 10.1007/s10570-013-0003-7
[6] LIU Y Y, XIN J H, CHOI C H, et al. Cotton fabrics with single-faced superhydrophobicity[J]. Langmuir, 2012, 28(50): 17426-17434.
doi: 10.1021/la303714h pmid: 23186211
[7] 钱国华, 陈蕾, 张佳平, 等. 有机硅交联改性含氟共聚物及其棉织物拒水整理耐久性研究[J]. 印染助剂, 2019, 36(1): 15-19.
QIAN Guohua, CHEN Lei, ZHANG Jiaping, et al. Study on organosilicon crosslinked modified fluorine-containing copolymer and its water repellent finish durability of cotton fabric[J]. Textile Auxiliaries, 2019, 36 (1): 15-19.
[8] ZHAO T, ZHENG J Z, SUN G, et al. Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics[J]. Carbohydrate Polymers, 2012, 89(1): 193-198.
doi: 10.1016/j.carbpol.2012.02.070 pmid: 24750623
[9] 邓瑾妮, 郑朝晖, 丁小斌. 短氟碳链含氟丙烯酸酯聚合物的制备及其拒水拒油性能研究[J]. 塑料工业, 2015, 43(10):100-103,118.
DENG Jinni, ZHENG Zhaohui, DING Xiaobin. Preparation of short fluorocarbon chain fluoroacrylate polymer and its water and oil repellency[J]. Plastics Industry, 2015, 43 (10): 100-103,118.
[10] 梅敏, 钱建华, 周榆凯, 等. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
MEI Min, QIAN Jianhua, ZHOU Yukai, et al. Preparation of nano-SiO2/fluorosilicon containing waterproof and moisture permeable finishing agent and its application[J]. Journal of Textile Research, 2022, 43 (12): 118-124.
[11] 钱海洪, 王鸿博, 杜金梅, 等. 基于短链含氟丙烯酸酯细乳液的棉织物拒水拒油整理[J]. 纺织学报, 2019, 40(3): 83-89.
QIAN Haihong, WANG Hongbo, DU Jinmei, et al. Water and oil repellent finishing of cotton fabric based on short chain fluoroacrylate fine lotion[J]. Journal of Textile Research, 2019, 40 (3): 83-89.
[12] 蔡露, 康佳良, 吕存, 等. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(2):161-167.
CAI Lu, KANG Jialiang, LÜ Cun, et al. Preparation of self-cross-linked fluorinated polyacrylate emulsions and their application properties[J]. Journal of Textile Research, 2021, 42 (2): 161-167.
doi: 10.1177/004051757204200306
[13] ZHANG M H, SHI L Y, YUAN S A, et al. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol[J]. Journal of Colloid and Interface Science, 2009, 330(1): 113-118.
doi: 10.1016/j.jcis.2008.10.038
[14] ZENG C, WANG H X, ZHOU H, et al. Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating[J]. RSC Advances, 2015, 5(75): 61044-61050.
doi: 10.1039/C5RA08040A
[15] CHAO H X, SHUN T J, JING Z, et al. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization[J]. Thin Solid Films, 2009, 517(16): 4593-4598.
doi: 10.1016/j.tsf.2009.03.185
[16] FU H Q, YAN C B, ZHOU W, et al. Preparation and characterization of a novel organic montmorillonite/ fluorinated waterborne polyurethane nanocomposites: effect of OMMT and HFBMA[J]. Composites Science and Technology, 2013, 85: 65-72.
doi: 10.1016/j.compscitech.2013.05.018
[1] 刘欣宇, 李剑浩, 王震, 沈军炎, 杨雷. 复合型无氟聚丙烯酸酯乳液的制备及其防水性能[J]. 纺织学报, 2023, 44(04): 124-131.
[2] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[3] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[4] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[5] 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69.
[6] 卢雪, 刘秀明, 房宽峻, 李瀚宇, 李翔, 高闯. 锦纶/棉混纺织物的耐久无氟拒水整理[J]. 纺织学报, 2021, 42(03): 14-20.
[7] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[8] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[9] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[10] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
[11] 蒋志青 马延涛 郭亚 马建伟 陈韶娟. 仿针织牛仔面料的开发及性能评价[J]. 纺织学报, 2018, 39(03): 45-49.
[12] 卢声 林杰 路艳华 黄凤远 程德红. 用含三嗪结构苯基磷酸酯的涤纶织物阻燃整理[J]. 纺织学报, 2018, 39(03): 98-102.
[13] 李继丰 杜兆芳 董丹丹 颜家俊 许云辉 梅毓. 聚丙烯非织造布拒水整理对葡萄套袋微环境的影响[J]. 纺织学报, 2017, 38(07): 101-106.
[14] 蒲泽佳 周向东. 聚丙烯酸酯改性硅溶胶的合成及其应用性能[J]. 纺织学报, 2017, 38(05): 86-92.
[15] 肖渊 刘金玲 申松 陈兰. 织物表面微滴喷射打印沉积过程试验研究[J]. 纺织学报, 2017, 38(05): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!