纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 161-167.doi: 10.13475/j.fzxb.20220503701
XU Ruidong1, WANG Hang1, QU Lijun1,2, TIAN Mingwei1,2()
摘要:
针对现有薄膜状、硅胶基触摸传感器件抗弯折性差、热湿舒适性不佳等问题,提出了采用柔软亲肤的聚乳酸非织造材料为基材构筑柔性触摸传感电子织物的研究策略,构建聚丙烯酰胺-氯化锂离子水凝胶双向离子导电体系,采用芯吸沉积效应制备石墨烯导电非织造织物,复合形成层叠结构电子织物,研究触摸传感电子织物对触摸动作的识别及不同机械形变对触摸信号的影响规律。结果表明:触摸传感电子织物可定位识别触摸动作;响应时间仅为25 ms,表现出优异的响应速度;在不同速度触摸下,触摸信号波动率仅为5%,表现出优异的稳定性。弯曲循环500次后,触摸传感电子织物的触摸性能仍维持恒定,表现出优异的抗干扰性。此外,触摸传感电子织物具有优异的热湿舒适性,可长期穿戴。基于此,触摸传感电子织物可实现显示界面的控制功能,在可穿戴人机交互领域具有广阔的发展潜力。
中图分类号:
[1] |
XU Jiandong, LI Xiaoshi, CHANG Hao, et al. Electrooculography and tactile perception collaborative interface for 3D human-machine interaction[J]. ACS Nano, 2022, 16(4): 6687-6699.
doi: 10.1021/acsnano.2c01310 pmid: 35385249 |
[2] | SHU Quan, XU Zhenbang, LIU Shuai, et al. Magnetic flexible sensor with tension and bending discriminating detection[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2021.134424. |
[3] |
KANG Minpyo, KIM Jejung, JANG Bongkyun, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics[J]. ACS Nano, 2017, 11(8): 7950-7957.
doi: 10.1021/acsnano.7b02474 pmid: 28727414 |
[4] |
LING Hao, CHEN Ruwei, HUANG Quanbo, et al. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing[J]. Green Chemistry, 2020, 22(10): 3208-3215.
doi: 10.1039/D0GC00658K |
[5] | PANG Yaokun, XU Xianchen, CHEN Shoue, et al. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107137. |
[6] | ZHANG Lun, ZHANG Xiaoyu, ZHANG Huiyuan, et al. Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.134751. |
[7] | ZHANG Yuan, YANG Junlong, HOU Xingyu, et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-29093-y. |
[8] | FU Min, ZHANG Jianming, JIN Yuming, et al. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers[J]. Advanced Science, 2020. DOI: 10.1002/advs.202000258. |
[9] | XU Shuhan, ZHAO Huiqi, LI Qing, et al. Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107307. |
[10] | ZHAO Xuan, ZHANG Zheng, LIAO Qingliang, et al. Self-powered user-interactive electronic skin for programmable touch operation platform[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba4294. |
[11] | YOO D, WON D J, CHO W, et al. Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range[J]. Advanced Materials Technologies, 2021. DOI: 10.1002/admt.202100358. |
[12] |
WON D J, YOO D, KIM J. Effect of a microstructured dielectric layer on a bending-insensitive capacitive-type touch sensor with shielding[J]. ACS Applied Electronic Materials, 2020, 2(3): 846-854.
doi: 10.1021/acsaelm.0c00015 |
[13] |
KIM Y, KIM J W. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor[J]. Applied Surface Science, 2016, 363: 1-6.
doi: 10.1016/j.apsusc.2015.11.052 |
[14] | KIM S J, PHUNG T H, KIM S, et al. Low-cost fabrication method for thin, flexible, and transparent touch screen sensors[J]. Advanced Materials Technologies, 2020. DOI: 10.1002/admt.202000441. |
[15] |
KIM C C, LEE H H, OH KYU H, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687.
doi: 10.1126/science.aaf8810 |
[16] | GAO Guorong, YANG Fangjian, ZHOU Fenghua, et al. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202004290. |
[17] | YOON H J, LEE D M, KIM Y J, et al. Mechanoreceptor-inspired dynamic mechanical stimuli perception based on switchable ionic polariza-tion[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100649. |
[18] | SHEN Zequn, ZHU Xiangyang, MAJIDI Carmel, et al. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses[J]. Advanced Materials, 2021.DOI:10.1002/adma.202102069. |
[19] |
ZHU Chenxi, JIANG Wei, HU Jinglei, et al. Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(7): 2509-2516.
doi: 10.1021/acsapm.9b01197 |
[20] | GÜZDEMIR Özgün, BERMUDEZ Victor, KANHERE Sagar, et al. Melt-spun poly(lactic acid) fibers modified with soy fillers: toward environment-friendly disposable nonwovens[J]. Polymer Engineering & Science, 2020, 60(6): 1158-1168. |
[1] | 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123. |
[2] | 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231. |
[3] | 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142. |
[4] | 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237. |
[5] | 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31. |
[6] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[7] | 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55. |
[8] | 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78. |
[9] | 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212. |
[10] | 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166. |
[11] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[12] | 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154. |
[13] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[14] | 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106. |
[15] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
|