纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 180-187.doi: 10.13475/j.fzxb.20220706601

• 服装工程 • 上一篇    下一篇

运动内衣承托及其动态舒适性能的有限元分析

孙玥1,2,3(), 周凌芳1, 周祺旋1, 张诗晨4, 易洁伦5   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.服装数字化技术浙江省工程实验室, 浙江 杭州 310018
    4.广州美术学院 工业设计学院, 广东 广州 510000
    5.香港理工大学 时装及纺织学院, 香港 999077
  • 收稿日期:2022-07-19 修回日期:2023-03-05 出版日期:2023-09-15 发布日期:2023-10-30
  • 作者简介:孙玥(1988—),女,讲师,博士。主要研究方向为服装数字化仿真。E-mail:sunyue@zstu.edu.cn
  • 基金资助:
    浙江理工大学科研启动基金项目(20072324-Y)

Finite element analysis of supportive performance and dynamic comfort of sports bra

SUN Yue1,2,3(), ZHOU Lingfang1, ZHOU Qixuan1, ZHANG Shichen4, YICK Kit-lun5   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Apparel Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology, Hangzhou, Zhejiang 310018, China
    4. School of Innovation Design, Guangzhou Academy of Fine Arts, Guangzhou, Guangdong 510000, China
    5. School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2022-07-19 Revised:2023-03-05 Published:2023-09-15 Online:2023-10-30

摘要:

为对运动内衣的功能性和舒适性进行可量化预测及评估,缩短内衣行业的产品设计开发流程,对人体和运动内衣的动态接触关系建立有限元模型,并研究乳房在运动过程中与运动内衣的复杂相互作用机制。首先通过三维人体扫描获得人体点云数据,运用逆向工程软件进行处理,得到胸部、身体躯干和运动内衣的几何模型。利用过盈配合方法模拟人体穿着运动内衣的预紧力状态,并在重力场中加入三维运动系统捕捉的躯干动态位移作为边界条件来驱动有限元模型,从而模拟人体穿着运动内衣时的乳房运动形态。模拟结果与真实测量值的相对误差为5.15%,验证了此模型的准确性。在此模型的基础上进一步对运动内衣面料的力学属性进行参数化设计,研究了5倍初始弹性模量的运动内衣对乳房的控制性能和动态压力舒适性。结果表明,使用高弹性模量材料的运动内衣虽然能轻微增加对胸部位移的控制效果,但相应增加的人体服装压已经高于人体舒适的服装压力范围。本文提出的研究方法和结果可从功能性和舒适性角度综合指导运动内衣的面料选择,优化运动内衣的设计并缩短开发时间。

关键词: 运动内衣, 承托性能, 动态舒适性, 乳房位移, 接触压力, 有限元模型

Abstract:

Objective Without the adequate support and protection, females' breasts would suffer from troubles such as ligament rupture and mastitis during physical activities. Wearing sports bra could limit the movement of breasts, thus reducing the pain or discomfort during exercises. In order to predict and evaluate the function and comfort of sports bra, as well as to reduce the process of product design and development for intimate apparel industry, a dynamic contact finite element (FE) modeling system for human body and sports bra was constructed to evaluate the performance of sports bra with different design features from the aspects of control level and contact pressure.

Method The data of female chest was obtained by 3-D body scanner to obtain the geometric model of breasts, body torso and sports bra. The method of interference fit was adopted to simulate the pre-tension of the breasts and sports bra after wearing. The displacement of the torso obtained from the motion capture system was used as the boundary condition to drive the finite element model under the gravity field. The motion of the breasts after wearing sports bra was simulated by this FE model and a parametric study was also conducted for different material parameters of the sports bra.

Results The simulated results from the constructed FE contact model between human body and sports bra was validated with the motion capture experiment in terms of the nipple displacement. The calculated relative average absolute error was 4.13% (braless condition) and 5.15% (wearing sports bra) which denoted the accuracy of the FE method. Based on the numerical model, a parametric study was conducted to investigate different fabric materials on the control performance and wearing comfort. A virtual sports bra (SPB2) with higher Young's modulus, which was 5 times than the original tested sample SPB1, was introduced into the FE contact model. The maximum motion displacement of nipple when wearing SPB1 was 235.043 mm, while that was 228.861 mm for SPB2. The control effect of breast movement by SPB2 was increased by only 2.6% when comparing with SPB1. With regards to the contact pressure, it was revealed that in a static state, the shoulder strap has the highest contact pressure, followed by the lower under-band and the bottom of breasts (Tab. 3). It is mainly because the effects of gravity lead to the sagging of the breasts, thus the shoulder strap produces a corresponding force to support the breasts. The dynamic contact pressure extracted from different positions of human body showed that large fluctuations were detected at the bottom breasts for both SPB1 and SPB2, appearing periodically. The dynamic pressure in the position of shoulder straps, under-band and bottom breasts of SPB2 (0.30-1.19 kPa) was all higher than SPB1 (1.56-4.65 kPa) (Fig. 10), which was out the range of comfort pressure of human body (1.96-3.92 kPa). The results showed that although the higher Young's modulus of sports bra could strengthen the control performance slightly, the corresponding increase of contact pressure was higher than the comfortable clothing pressure range of the human body, which could easily cause the human body feel discomfort.

Conclusion The breast displacement and the dynamic contact pressure between breasts and bra were evaluated quantitively by the proposed numerical simulation method. The supportive performance and wearing comfort by sports bra with different material properties were compared. This model can be utilized to investigate the complicated contact mechanism between the breasts and sports bra during physical activities, thus comprehensively guiding the fabric selection of sports bra from the perspective of functionality and comfort. The intimated apparel industry will be benefited by the proposed method in terms of optimizing the design for sports bra and shortening the development duration.

Key words: sports bra, supportive performance, dynamic comfort, breast displacement, contact pressure, finite element model

中图分类号: 

  • TS941.2

图1

运动内衣款式图"

图2

人体几何模型"

图3

运动内衣几何模型"

图4

人体-运动内衣各部位的有限元模型"

表1

网格类型及尺寸"

有限元模型 几何类型 网格类型 网格尺寸/mm
人体软组织 实体 四面体 8
身体躯干 刚体
运动内衣 壳体 四边形 8

表2

运动内衣各部分材料参数"

运动内衣部件 弹性模量E/MPa 泊松比ν
肩带 0.18 0.05
下捆带 0.19 0.10
面料(纵向) 0.14 0.22
面料(横向) 0.47 0.16

图5

动态捕捉实验"

图6

实验测量与有限元模拟的无内衣乳点运动位移"

图7

实验测量和有限元模拟的穿着运动内衣下乳点位移"

图8

有限元模拟的静态接触压力分布图"

图9

人体各部位最大接触压力分布区域"

表3

各部位静态模拟的最大接触压力"

内衣类型 肩带 胸底 下捆
SPB1 1.15 0.33 0.60
SPB2 4.58 1.65 2.83

图10

有限元模拟穿着SPB1和SPB2运动内衣的动态接触压力"

[1] BOWLES K, STEELE J R. Effects of strap cushions and strap orientation on comfort and sports bra perform-ance[J]. Medicine & Science in Sports & Exercise, 2013, 45(6): 1113-1119.
[2] ÇOMÇALI B, KOCAOZ S, ÖZDEMIR B A, et al. Effects of sagging breasts and other risk factors associated with mastalgia: a case-control study[J]. Scientific Reports, 2021, 11(1): 1-7.
doi: 10.1038/s41598-020-79139-8
[3] SCURR J, WHITE J, HEDGER W. The effect of breast support on the kinematics of the breast during the running gait cycle[J]. Journal of Sports Sciences, 2010, 28(10): 1103-1109.
doi: 10.1080/02640414.2010.497542 pmid: 20686995
[4] LIU K, ZHANG L, ZHU C, et al. An analysis of influence factors of sports bra comfort evaluation based on different sizes[J]. Journal of the Textile Institute, 2019, 110(12):1792-1799.
doi: 10.1080/00405000.2019.1620513
[5] HARDAKER C, FOZZARD G. The bra design process: a study of professional practice[J]. International Journal of Clothing Science and Technology, 1997, 9(4) : 311-325.
doi: 10.1108/09556229710175795
[6] 陈晓娜, 阮佳, 赵蒙蒙, 等. 青年女性穿着典型压缩式运动文胸动态压力分布研究[J]. 北京服装学院学报(自然科学版), 2018, 38(3): 40-46.
CHEN Xiaona, RUAN Jia, ZHAO Mengmeng, et al. Dynamic pressure distribution of typical compression sports bra worn by young women[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2018, 38(3): 40-46.
[7] 刘楠. 基于胸部形态位移测量的运动文胸优化设计[D]. 杭州: 浙江理工大学, 2020: 13-19.
LIU Nan. Optimal design of sports bra based on measurement of chest shape displacement[D]. Hangzhou: Zhejiang Sci-Tech University, 2020:13-19.
[8] 余越云, 吴志明. 基于运动文胸的乳房位移坐标系分析与研究[J]. 丝绸, 2020, 57(12): 63-67.
YU Yueyun, WU Zhiming. Analysis and research on breast displacement coordinate system based on sports bra[J]. Journal of Silk, 2020, 57(12): 63-67.
[9] LI Y, ZHANG X, Yeung K. A 3D biomechanical model for numerical simulation of dynamic mechanical interactions of bra and breast during wear[J]. Sen'i Gakkaishi, 2003, 59(1):12-21.
doi: 10.2115/fiber.59.12
[10] ZHANG M, CHEUNG J T M, LI Y. Computational modeling the foot-insole interface[J]. Studies in Computational Intelligence, 2007, 55: 311-321.
[11] DAN R, FAN X R, WANG C Q. Numerical simulation of the relationship between pressure and displacement for the top part of men's socks[J]. Textile Research Journal, 2011, 81(2): 128-136.
doi: 10.1177/0040517510377830
[12] SUN Y, YICK K L, YU W, et al. 3D bra and human interactive modeling using finite element method for bra design[J]. Computer-Aided Design, 2019, 114: 13-27.
doi: 10.1016/j.cad.2019.04.006
[13] SUN Y, YICK K L, CAI Y Q, et al. Finite element analysis on contact pressure and 3D breast deformation for application in women's bras[J]. Fibers and Polymers, 2021, 22(10): 2910-2921.
doi: 10.1007/s12221-021-0878-0
[14] 余玉坤, 孙玥, 侯珏, 等. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(4): 124-132.
YU Yukun, SUN Yue, HOU Jue, et al. Dynamic finite element modeling and simulation of single layer clothing ease allowance[J]. Journal of Textile Research, 2022, 43(4): 124-132.
[15] BRUNON B. Numerical modeling of bra wear during running[C]// BOUTEN L, CORNOLO J, MORESTIN F. 11th World Congress on Computational Mechanics. Spain:International Center for Numerical Methods in Engineering, 2014: 1-2.
[16] LIANG R X, YIP J, YU W, et al. Numerical simulation of nonlinear material behaviour: application to sports bra design[J]. Materials & Design, 2019. DOI: 10.1016/i.matdes.2019.108177.
[17] SUN Y, CHEN L H, YICK K L, et al. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 90: 615-625.
doi: 10.1016/j.jmbbm.2018.11.016
[18] 邱江元. 基于胸部力学模型的运动文胸穿着模拟[D]. 苏州: 苏州大学, 2016: 20-28.
QIU Jiangyuan. Simulation of a breast and a sports bra interaction during exercise[D]. Suzhou: Soochow University, 2016: 20-28.
[19] PHELLAN R, HACHEM B, CLIN J, et al. Real time biomechanics using the finite element method and machine learning: review and perspective[J]. Medical Physics, 2021, 48(1): 7-18.
doi: 10.1002/mp.v48.1
[20] 宋晓霞, 冯勋伟. 服装压力与人体舒适性之关系[J]. 纺织学报, 2006, 27(3): 103-105.
SONG Xiaoxia, FENG Xunwei. Relationship between garment pressure and human body comfortableness[J]. Journal of Textile Research, 2006, 27(3): 103-105.
[1] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[2] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[3] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[4] 陈晓娜, 王二会. 文胸钢圈对乳房竖直位移的影响[J]. 纺织学报, 2019, 40(07): 133-137.
[5] 康雪莲 应柏安 张欣 段锦. 接触状态下男上装基础版型对人体压力分布的有限元模型[J]. 纺织学报, 2018, 39(11): 116-121.
[6] 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37.
[7] 苑洁 于伟东 陈克敏. 基于功能磁共振的织物接触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152.
[8] 薛亚红 陈继刚 闫世程 骆俊廷 . 二维机织复合材料力学分析中的周期性边界条件研究[J]. 纺织学报, 2016, 37(09): 70-77.
[9] 赵蒙蒙 王丽霞. 圆装袖肩部造型结构设计[J]. 纺织学报, 2015, 36(12): 109-113.
[10] 阎玉秀 高婕 金子敏 唐洁芳 陶建伟. 女子篮球运动内衣压力对心率变异指标的影响[J]. 纺织学报, 2014, 35(6): 100-0.
[11] 缪旭红 孔祥勇. 经编间隔织物防刺行为的数值模拟[J]. 纺织学报, 2012, 33(12): 112-117.
[12] 徐军;周晴. 运动内衣压力分布的主观评定[J]. 纺织学报, 2005, 26(2): 77-78.
[13] 周晴;徐军. 运动内衣穿着压力舒适的主观评定[J]. 纺织学报, 2004, 25(06): 63-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!