纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 20-26.doi: 10.13475/j.fzxb.20220405301

• 纤维材料 • 上一篇    下一篇

用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜

孟鑫1, 朱淑芳1, 徐英俊1, 闫旭1,2()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 省部共建生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2022-04-15 修回日期:2022-08-12 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 闫旭(1985—),男,副教授,博士。主要研究方向为功能纤维材料的研究与开发。E-mail: qdyanx@qdu.edu.cn
  • 作者简介:孟鑫(1997—),女,硕士生。主要研究方向为功能纳米纤维。
  • 基金资助:
    中国博士后科学基金项目(2020M671998);生物多糖纤维成形与生态纺织国家重点实验室自主课题项目(ZKT35);山东省重大科技创新工程项目(2019JZZY020220)

In-situ electrospun membranes from recycled polyethylene terephthalate for conservation of paper documents

MENG Xin1, ZHU Shufang1, XU Yingjun1, YAN Xu1,2()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-04-15 Revised:2022-08-12 Published:2023-09-15 Online:2023-10-30

摘要:

针对纸质文档易受潮、易撕裂、易老化等保护难题,以回收废旧聚对苯二甲酸乙二醇酯(rPET)为原料,通过原位静电纺丝工艺将rPET纳米纤维直接沉积到纸质文档表面形成纤维保护膜。分析了原位静电纺处理前后纸质文档的形貌、表面润湿性、力学性能以及防紫外线性能。结果表明:制备的rPET纤维膜不会遮盖字迹,纤维膜的孔径为(5.53±0.38)μm,可阻挡常见灰尘和霉菌;最优条件下制备的rPET纤维膜可将纸质文档的水接触角提高到135.1°;沉积rPET纤维膜后纸质文档的拉伸强度和撕裂强度较未处理文档分别提高了129.1%和161.1%,紫外线防护系数可达到71.4。研究发现原位静电纺rPET纤维膜到纸质文档表面达到了较好的保护效果,该方法为矿泉水瓶的回收再利用及纸质文档保护提供了新途径。

关键词: 原位静电纺丝, 回收聚对苯二甲酸乙二醇酯, 纳米纤维, 纸质文档保护, 覆膜

Abstract:

Objective Paper documents, such as old books, archives, and paper-based commemorative items are a rich source of human knowledge and passion. It is challengeable to protect paper documents from moisture, tear and aging. This paper proposes a straightforward and cost-effective approach for paper documents protection by in-situ electrospinning, which directly deposited as-spun nanofibrous membranes onto the paper documents surface.

Method Used mineral water bottles which are transparent and hydrophobic were selected as the raw material (mainly polyethylene terephthalate, rPET) and were dissolved to form solutions with different concentrations. The rPET solution was electrospun into fibers under different spinning parameters, which were directly deposited onto the paper document surface to form a transparent protective membrane using a portable electrospinning device (Fig. 1). The morphology, surface wettability, mechanical properties and UV resistance of the paper documents before and after in-situ electrospinning were analyzed to evaluate the protective effect of the membranes.

Results The optimized spinning parameters were the rPET mass fraction of 8%, spinning distance of 15 cm, spinning time of 10 min, spinning voltage of 15 kV, and solution feeding rate of 10 μL/min. Under these parameters, the prepared rPET fiber membrane was almost transparent without covering the prints on paper (Fig. 2) but would block common dust and mold effectively due to the small membrane pore diameters of about (5.53±0.38) μm (Fig. 3). The as-spun rPET nanofibrous membranes under optimal conditions made the paper's surface hydrophobic with the water contact angle about 135.1° (Fig. 4) to avoid water immersion. It was also found that the deposited rPET fibers could form an interlocking grid structure, increasing the tensile strength in the horizontal and vertical directions by 129.1% and 16.1%. Tear resistance was also improved in both transverse (86%) and longitudinal (161.1%) directions, respectively (Fig. 6). The study also revealed that the as-spun rPET nanofibrous membrane also increased the UV protection factor (UPF) of the paper documents from 16.2 to 71.4 (Fig. 7), reducing UV induced aging.

Conclusion In-situ electrospinning rPET membrane onto paper documents is easy to operate and could achieve a good protection effect. The prepared rPET fiber membrane is transparent, and has small pore size, which could prevent dust while not affecting the appearance of the paper documents. The as-spun rPET membrane could also obviously enhance the mechanical and UV protect properties of the paper documents. These results suggested that in-situ electrospinning rPET onto the paper document forms an useful way for both protection of paper documents and the recycling of water bottles.

Key words: sin-situ electrospinning, recycled polyethylene terephthalate, nanofiber, paper document protection, deposit membrane

中图分类号: 

  • TS179

图1

rPET溶液制备和原位静电纺丝工艺示意图"

表1

纺丝参数设置"

样品编号 rPET
质量分数/%
纺丝时间/
min
纺丝距离/cm
1# 6 10 15
2# 8 10 15
3# 10 10 15
4# 6 10 12
5# 8 10 12
6# 10 10 12
7# 6 15 15
8# 8 15 15
9# 10 15 15

图2

不同纺丝参数下原位静电纺丝后纸质文档宏观和SEM照片"

图3

不同纺丝参数下纤维膜平均直径和平均孔径"

图4

不同纺丝参数下原位静电纺丝后纸质文档的水接触角"

图5

原位静电纺丝处理前后纸质文档对比"

图6

原位静电纺丝rPET纤维膜前后纸质文档的力学性能"

图7

不同区域纸质文档的紫外线透射率"

[1] LIU J, WANG J. Main factors affecting the preservation of Chinese paper documents: a review and recommendations[J]. IFLA Journal, 2010, 36(3):227-234.
doi: 10.1177/0340035210378711
[2] 原方圆, 马书南, 雷伟, 等. 高安全性数字化档案管理系统的设计与实现[J]. 软件, 2018, 39(7):98-102.
YUAN Fangyuan, MA Shunan, LEI Wei, et al. Design and implementation of high security digital archives management system[J]. Software, 2018, 39 (7): 98-102.
[3] BATY J, MAITLAND C, MINTER W, et al. Deacidification for the conservation and preservation of paper-based works: a review[J]. Bioresources, 2010, 5(3):1955-2023.
doi: 10.15376/biores
[4] CRISTINA Area M, CHERADAME H. Paper aging and degradation: recent findings and research methods[J]. Bioresources, 2011, 6(4):5307-5337.
doi: 10.15376/biores
[5] ELISA R, MARCO B, ANDREA P, et al. Monitoring of the surface of paper samples exposed to UV light by ATR-FT-IR spectroscopy and use of multivariate control charts[J]. Analytical and Bioanalytical Chemistry, 2007, 388(5/6):1249-1263.
doi: 10.1007/s00216-007-1370-4
[6] LI Q, XI S, ZHANG X. Conservation of paper relics by electrospun PVDF fiber membranes[J]. Journal of Cultural Heritage, 2014, 15(4):359-364.
doi: 10.1016/j.culher.2013.09.003
[7] 刘雷艮, 沈忠安, 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(7):12-16.
LIU Leigen, SHEN Zhong'an, HONG Jianhan. Preparation and properties of electrospun composite material for high-efficiency ash filtration[J]. Journal of Textile Research, 2015, 36 (7): 12-16.
doi: 10.1177/004051756603600103
[8] LI H. Preparation and application of polyurethane coating material based on epoxy cyclohexane protective for paper[J]. Coatings (Basel), 2021. DOI:10.3390/coatings11040431.
[9] YAN X, LIU G S, YANG J, et al. In situ surface modification of paper-based relics with atmospheric pressure plasma treatment for preservation purposes[J]. Polymers (Basel), 2019. DOI:10.3390/polym11050786.
[10] LIU C, HSU P, LEE H, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015. DOI:10.1038/ncomms7205.
[11] WANG C, MENG N, BABAR A A, et al. Highly transparent nanofibrous membranes used as transparent masks for efficient PM0.3 removal[J]. ACS Nano, 2022, 16(1):119-128.
doi: 10.1021/acsnano.1c09055
[12] YAN X, YU M, RAMAKRISHNA S, et al. Advances in portable electrospinning devices for in situ delivery of personalized wound care[J]. Nanoscale, 2019, 11(41):19166-19178.
doi: 10.1039/c9nr02802a pmid: 31099816
[13] DONG W, LIU J, MOU X, et al. Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electro-spinner[J]. Colloids and Surfaces B: Biointerfaces, 2020. DOI:10.1016/j.colsurfb.2019.110766.
[14] VADICHERLA T, SARAVANAN D, MUTHU S S K. Polyester recycling-technologies, characterization, and applications[M]. Singapore: Springer Singapore, 2015:149-165.
[15] 李艳艳, 李梦娟, 葛明桥. 有色废弃聚酯的脱色与再利用研究进展[J]. 纺织学报, 2021, 42(8):17-23.
LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste[J]. Journal of Textile Research, 2021, 42(8): 17-23.
[16] SHUKLA S R, HARAD A M, JAWALE L S. Recycling of waste PET into useful textile auxiliaries[J]. Waste Manag, 2008, 28(1):51-56.
doi: 10.1016/j.wasman.2006.11.002
[17] MALIK N, KUMAR P, SHRIVASTAVA S. et al. An overview on PET waste recycling for application in packaging[J]. International Journal of Plastics Technology, 2017, 21(1):1-24.
doi: 10.1007/s12588-016-9164-1
[18] BONFIM D P F, CRUZ F G S, BRETAS R E S, et al. A sustainable recycling alternative: electrospun PET-membranes for air nanofiltration[J]. Polymers, 2021. DOI:10.3390/polym13071166.
[19] CHEN S, LIU G, HE H, et al. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films[J]. Advances in Condensed Matter Physics, 2019, 2019:1-5.
[20] 同帜, 曹剑英. 文物古迹的环境污染因素及其影响研究[J]. 纺织高校基础科学学报, 2004(3):247-251.
TONG Zhi, CAO Jianying. Study on environmental pollution aactors and influImpact of cultural relics and monuments[J]. Journal of Basic Science of Textile University, 2004(3): 247-251.
[21] XU J, ZHANG T, ZHANG X, et al. Preparation of polymeric material containing UV absorber for application in paper-based relics protection[J]. Polymer-Plastics Technology and Materials, 2020, 59(5):536-545.
doi: 10.1080/25740881.2019.1669651
[22] PRICE D, RATAJCZAK E. Detection of a transient after flash photolysis of the aromatic molecules C6X6(X = H, D, F) and C5Y5N (Y = H, F) in the gas phase[J]. Journal of the Chemical Society, Chemical Communications, 1976. DOI: 10.1039/c39760000902.
[23] 时有明, 李栋玉. 手机白光LED闪光灯的光谱分析[J]. 曲靖师范学院学报, 2018, 37(6):3.
SHI Youming, LI Dongyu. Study on flash lamp by white LED of mobile phone using spectra analysis[J]. Journal of Qujing Normal University, 2018, 37 (6): 3.
[24] URBAS R, SLUGA F, BARTENJEY I. Influence of constructional parameters on UV protective efficiency of fabrics[J]. Tekstilec, 2004, 47: 308-314.
[25] 温馨, 杨荣静, 何秀玲, 等. 聚酯薄膜与聚酯织物的紫外光学性能研究[J]. 棉纺织技术, 2021, 49(8):10-13.
WEN Xin, YANG Rongjing, HE Xiuling, et al. Study on ultraviolet optical property of polyester film and polyester fabric[J]. Cotton Textile Technology, 2021, 49 (8): 10-13.
[26] 张红霞, 施立佳, 田伟, 等. 工艺参数对织物抗紫外线性能的影响[J]. 纺织学报, 2009, 30(10):53-57.
ZHANG Hongxia, SHI Lijia, TIAN Wei, et al. Effect of process parameters on ultraviolet resistance of fabrics[J]. Journal of Textile Research, 2009, 30(10): 53-57.
[27] 周蓉, 刘杰. 抗紫外线纺织品的研究与产品设计[J]. 纺织学报, 2004, 25(2):89-91.
ZHOU Rong, LIU Jie. Research and product design of UV-resistant textiles[J]. Journal of Textile Research, 2004, 25(2): 89-91.
[1] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[2] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[3] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[4] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[5] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[6] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[7] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[8] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[9] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[10] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[11] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[12] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[13] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[14] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[15] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!