纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 232-242.doi: 10.13475/j.fzxb.20220708302

• 综合述评 • 上一篇    下一篇

增强纤维用上浆剂的耐高温化改性研究进展

钱晨1,2, 黄博翔1, 李永强2, 万军民2, 傅雅琴1()   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.浙江理工大学桐乡研究院, 浙江 桐乡 314500
  • 收稿日期:2022-07-22 修回日期:2023-02-23 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 傅雅琴(1965—),女,教授,博士。主要研究方向为纺织复合材料及其复合技术。E-mail:fyq01@zstu.edu.cn
  • 作者简介:钱晨(1992—),男,讲师,博士。主要研究方向为功能高分子及其复合材料。
  • 基金资助:
    国家自然科学基金项目(52103150);高等学校学科创新引智计划资助项目(D21011)

Research progress on high temperature resistant modified reinforcing fiber sizing agents

QIAN Chen1,2, HUANG Boxiang1, LI Yongqiang2, WAN Junmin2, FU Yaqin1()   

  1. 1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Tongxiang Research Institute, Tongxiang, Zhejiang 314500, China
  • Received:2022-07-22 Revised:2023-02-23 Published:2023-09-15 Online:2023-10-30

摘要:

在高性能热塑性树脂基复合材料的开发与前沿应用中,常规的纤维上浆剂存在耐高温性能不足的问题,因此,耐高温型增强纤维上浆剂的开发与研究引起了广泛关注。基于纤维上浆剂的配方组成,介绍了近年来增强纤维用上浆剂的耐高温化改性研究进展。重点综述了耐高温型上浆剂体系中浆料树脂(成膜剂)的选择与优化方法,探讨了无机纳米杂化对上浆剂耐热性能提升及复合材料界面性能的改善效果,并分析了偶联剂在耐高温型上浆剂体系中的作用与性能。基于产业化应用的考虑,最后指出:深入分子结构设计,开发绿色环保的耐高温型上浆剂将是未来研究的重点;考虑各类纤维及树脂基体的结构性能差别,有针对性地开发耐高温型上浆体系极为必要。

关键词: 纤维上浆剂, 复合材料, 热塑性树脂, 界面强度, 热稳定性

Abstract:

Significance Fiber sizing agent is one of the core technologies in the production of reinforcing fiber (carbon fiber, aramid fiber, glass fiber, etc.) and its composites. The sizing agent coated on the surface of reinforcing fibers facilitates the bundling of filaments, remedies the surface defects of the fibers, and improves the processing property of corresponding fabrics. Moreover, the sizing agent promotes the infiltration and tight binding of the matrix resin on the fibers through physical and chemical effects such as increased compatibility in similar structure, induced crystallization, and crosslinking/reaction. Nevertheless, the stability of the general fiber sizing agents at high temperatures is insufficient to meet the needs for the development and advanced applications of high-performance thermoplastic resin-based composites. Therefore, the development of fiber sizing agents with high temperature resistance has attracted extensive attention. Based on the basic composition of sizing agents, this review reports research and development progress in fiber sizing agents with high temperature resistance, which focuses on the selection and modification of film former of the sizing agents and introduces the effect of the inorganic hybridization on the heat resistance of sizing agents and interfacial properties of composites. The importance and property of coupling agents in the formulations are also discussed.

Progress Fiber sizing agent is a mixed liquor composed of a variety of functional components, including film former, coupling agent, lubricant, antifoaming agent, antistatic agent, pH regulator, and other functional additives. Film former accounts for 70%-90% of the total solid mass of sizing agent which directly affects the wetting ability and compatibility of fiber in resin matrix. To meet both requirements of high temperature resistance and compatibility with the matrix, most research focuses on the development of novel film former based on polyimide and polyarylether, which show high thermal stability and the same or similar chemical structure with the high-performance thermoplastic matrix in composites. However, these sizing agents still have defects in applications, for example, the use of organic solvent, which causes health and environmental risk. Hybrid modification by nano-silica, carbon nanotubes, graphene, and other nanocomponents has become another common strategy to improve the thermal stability and properties of fiber sizing agents. In the high temperature resistant fiber sizing agent system, the nanocomponents show a significant effect on improving the heat resistance and functionalizing the interface of composite. The introduction of nanocomponents inhibits the thermal decomposition of film former and increases the surface roughness of fibers, resulting in improved interface bonding between reinforcing fibers and matrix. Moreover, in consideration of the necessity of adding a coupling agent in the sizing agent for glass fiber and basalt fiber, the thermal decomposition temperature of various silane coupling agents has been systematically studied and summarized with their chemical structure. Despite the complex chemical process, the macromolecular coupling agent that contains both high temperature resistant imide groups and functional siloxane groups holds great potential for the applications of high temperature and high performance.

Conclusion and Prospect The future development of high temperature resistant fiber sizing agents is expected. In view of practical applications, there are still great challenges for novel fiber sizing agents in industrial production, and future breakthroughs are still needed. First of all, an in-depth study on the green synthesis of novel water-soluble/water dispersible film former with high thermal stability is required. The green and environmentally friendly sizing agent with no organic solvent use and satisfactory property will be highly desired in applications. Secondly, it is necessary to develop corresponding high temperature resistant sizing agents that are suitable for each kind of reinforced fiber. Finally, a systematic study is needed to reveal the complex effects of the addition of other functional additives on the stability and properties of the sizing agent in future research.

Key words: fiber sizing agent, composite, thermoplastic, interfacial strength, thermal stability

中图分类号: 

  • TB332

图1

SA-PI涂层改性的CF与PEEK的界面结构示意图"

图2

HPAEK合成路线与化学结构示意图"

表1

部分硅烷偶联剂的化学结构及其25%质量的热分解温度(Td25)"

硅烷偶联剂的化学结构 Td25/℃
ClCH2CH2CH2Si(OCH3)3 360
H2HCH2CH2NHCH2CH2CH2Si(OCH3)3 390
395
435
460
485
495
510
530
[1] 赵玉芬, 李嘉禄, 宋磊磊, 等. 上浆剂对国产碳化硅纤维表面及其织造性能的影响[J]. 纺织学报, 2017, 38(3): 78-84.
ZHAO Yufen, LI Jialu, SONG Leilei, et al. Influence of sizing agent on surface and weaving performance of SiC fibers[J]. Journal of Textile Research, 2017, 38(3): 78-84.
[2] YAO J, FANG Q, ZHANG G, et al. Effect of hydrophilic-hydrophobic ratio in self-emulsifying amphiphilic epoxy sizing agent on interfacial properties of carbon fibre/epoxy composites[J]. Progress in Organic Coatings, 2020. DOI: 10.1016/j.porgcoat.2020.105621.
[3] THOMASON J L. Glass fibre sizing: a review[J]. Composites Part A: Applied Science and Manufacturing, 2019.DOI: 10.1016/j.compositesa.2019.105619.
[4] 张宝艳. 先进复合材料界面技术[M]. 北京: 航空工业出版社, 2017: 104-115.
ZHANG Baoyan. Interfacial technology of advanced composites[M]. Beijing: Aviation Industry Press, 2017, 104-115.
[5] DEY M, DEITZEL J M, GILLESPIE J W, et al. Influence of sizing formulations on glass/epoxy interphase properties[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 59-67.
doi: 10.1016/j.compositesa.2014.04.006
[6] YUAN X, ZHU B, CAI X, et al. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.44757.
[7] 邵灵达, 黄锦波, 金肖克, 等. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(4): 68-73.
SHAO Lingda, HUANG Jinbo, JIN Xiaoke, et al. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites[J]. Journal of Textile Research, 2022, 43(4): 68-73.
[8] LI H. Fiberglass science and technology: chemistry, characterization, processing, modeling, application, and sustainability[M]. Cham: Springer International Publishing, 2021: 259-321.
[9] BIRON M. Thermoplastics and thermoplastic composi-tes[M]. 3rd ed. London: William Andrew Publishing. 2018: 821-882.
[10] STEPASHKIN А А, CHUKOV D I, SENATOV F S, et al. 3D-printed PEEK-carbon fiber (CF) composites: structure and thermal properties[J]. Composites Science and Technology, 2018, 164: 319-326.
doi: 10.1016/j.compscitech.2018.05.032
[11] CHENG X, HUANG Y, FANG Q, et al. Effect of the double bond content of sizing agents on the mechanical properties of carbon fibre reinforced vinyl ester composites[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2021.109145.
[12] REN T, ZHU G, ZHANG C, et al. Improving the interface of carbon-fibre-reinforced poly(ether-ether-ketone) composites with fibre surface coating: a review[J]. Polymer International, 2022, 71(7): 741-750.
doi: 10.1002/pi.v71.7
[13] 郝瑞婷, 张学军, 田艳红. 耐热型热塑性上浆剂研究进展[J]. 化工进展, 2018, 37(S1): 117-124.
doi: 10.16085/j.issn.1000-6613.2018-1069
HAO Ruiting, ZHANG Xuejun, TIAN Yanhong. Research progress of heat-resistant thermoplastic sizing agents[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 117-124.
doi: 10.16085/j.issn.1000-6613.2018-1069
[14] YANG Y, WANG T, WANG S, et al. Strong interface construction of carbon fiber-reinforced PEEK composites: an efficient method for modifying carbon fiber with crystalline PEEK[J]. Macromol Rapid Commun, 2020. DOI: 10.1002/marc.202000001.
[15] 王小问. 一种聚酰亚胺型玻璃纤维浸润剂在PEEK/GF复合材料中的应用[D]. 吉林: 吉林大学, 2020: 4-5.
WANG Xiaowen. Application of a polyimide glass fiber sizing agent in PEEK/GF composites[D]. Jilin:Jilin University, 2020: 4-5.
[16] WANG T, JIAO Y, MI Z, et al. Improving the interfacial adhesion of carbon fiber/polyether ether ketone composites by polyimide coating[J]. Chemistryselect, 2020, 5(19): 5507-5514.
doi: 10.1002/slct.v5.19
[17] WANG T, ZHANG K, WANG S, et al. Interfacial adhesion of carbon fiber to special engineering plastics: Effect of the functional groups in the matrix[J]. High Performance Polymers, 2020, 33(4): 462-468.
doi: 10.1177/0954008320966042
[18] SUN Z, GUO F L, WU X P, et al. Experimental and simulation investigations of the effect of hybrid GO-thermoplastic polyimide sizing on the temperature-dependent tensile behavior of short carbon fiber/polyetherimide composites[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2021.109166.
[19] YUAN H, ZHANG S, LU C, et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science, 2013, 279: 279-284.
doi: 10.1016/j.apsusc.2013.04.085
[20] YUAN H J, LU C X, ZHANG S C, et al. Preparation and characterization of a polyimide coating on the surface of carbon fibers[J]. New Carbon Materials, 2015, 30(2): 115-121.
doi: 10.1016/S1872-5805(15)60179-2
[21] YUAN C C, LI D Z, YUAN X Y, et al. Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2020.108490.
[22] 张昕. CFF/PEEK复合材料的制备与界面浸润性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:1-25.
ZHANG Xin. Preparation of CFF/ PEEK composites and research on interfacial wettability[D]. Harbin: Harbin Institute of Technology, 2019:1-25.
[23] HASSAN E A M, YANG L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering, 2019, 171: 70-77.
doi: 10.1016/j.compositesb.2019.04.015
[24] GIRAUD I, FRANCESCHI-MESSANT S, PEREZ E, et al. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation[J]. Applied Surface Science, 2013, 266: 94-99.
doi: 10.1016/j.apsusc.2012.11.098
[25] GIRAUD I, FRANCESCHI S, PEREZ E, et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly(ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science, 2015. DOI: 10.1002/app.42550.
[26] CHEN F, LIU X, LIU H, et al. Improved interfacial performance of carbon fiber/polyetherimide composites by polyetherimide and modified graphene oxide complex emulsion type sizing agent[J]. High Performance Polymers, 2021, 34(3): 292-309.
doi: 10.1177/09540083211053742
[27] LIU H, ZHAO Y, LI N, et al. Effect of polyetherimide sizing on surface properties of carbon fiber and interfacial strength of carbon fiber/polyetheretherketone composites[J]. Polymer Composites, 2020, 42(2): 931-943.
doi: 10.1002/pc.v42.2
[28] 颜天文. 碳纤维用聚芳醚酮上浆剂的制备及应用[D]. 长春: 长春工业大学, 2021: 10-11.
YAN Tianwen. Preparation and application of polyaryl ether ketone sizing agent for carbon fiber surface modification[D]. Changchun: Changchun University of Technology, 2021: 10-11.
[29] LIU W B, ZHANG S, HAO L F, et al. Properties of carbon fiber sized with poly (phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128(6): 3702-3709.
doi: 10.1002/app.v128.6
[30] MA W, WANG X, CHEN W, et al. Improved the surface properties of carbon fiber through hyperbranched polyaryletherketone sizing[J]. Polymer Composites, 2022, 43(4): 1948-1960.
doi: 10.1002/pc.v43.4
[31] HASSAN E A M, GE D, YANG L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 155-160.
doi: 10.1016/j.compositesa.2018.05.029
[32] HASSAN E A M, ELAGIB T H H, MEMON H, et al. Surface modification of carbon fibers by grafting PEEK-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials (Basel), 2019. DOI: 10.3390/ma12050778.
[33] WANG X, HUANG Z, LAI M, et al. Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers[J]. Applied Surface Science, 2020. DOI: 10.1016/j.apsusc.2020.145400.
[34] 刘杰, 周秀燕, 梁节英. 磺化聚醚砜上浆剂对碳纤维/聚醚砜复合材料界面性能的影响[J]. 复合材料学报, 2015, 32(2): 420-426.
LIU Jie, ZHOU Xiuyan, LIANG Jieying. Effect of sulfonated poly (ether sulfone) sizing agent on interfacial properties for carbon fiber/poly (ether sulfone) composites[J]. Acta Materiae Compositae Sinica, 2015, 32(02): 420-426.
[35] GAO X, HUANG Z, ZHOU H, et al. Higher mechanical performances of CF/PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s-PEEK[J]. Polymer Composites, 2019, 40(9): 3749-3757.
doi: 10.1002/pc.v40.9
[36] LYU H, JIANG N, HU J, et al. Preparing water-based phosphorylated PEEK sizing agent for CF/PEEK interface enhancement[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2021.109096.
[37] YAN T W, YAN F, LI S Y, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B-Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108258.
[38] HU J, YAN F, LIU H, et al. Water-based PEKC-COOH sizing agent for enhancing the interfacial adhesion of carbon fiber/polyether-ether-ketone composites[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109279.
[39] LIU L, HU J, ZHAO L, et al. Construction of solvent-resistant interphase of CF/PEEK composites via introducing water-based crosslinkable polyaryl ether sizing agent[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2022.109530.
[40] DONG Y, YU T, WANG X J, et al. Improved interfacial shear strength in polyphenylene sulfide/carbon fiber composites via the carboxylic polyphenylene sulfide sizing agent[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2020.108056.
[41] 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(8): 1785-1795.
ZHOU Dianrui, GAO Liang, HUO Hongyu, et al. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1785-1795.
[42] WANG S, YANG Y, MU Y, et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2020.108562.
[43] 陈博. 高性能热塑性上浆剂的制备和性能研究[D]. 大连: 大连理工大学, 2020: 23-48.
CHEN Bo. Study on preparation and properties of high performance thermoplastic resin sizing agent[D]. Dalian: Dalian University of Technology, 2020: 23-48.
[44] 李佳乐, 李楠, 胡方圆, 等. 乳化剂对耐高温热塑性水分散乳液上浆剂性能的影响[J]. 复合材料科学与工程, 2021, (4): 61-65.
doi: 10.19936/j.cnki.2096-8000.20210428.009
LI Jiale, LI Nan, HU Fangyuan, et al. Effect of emulsifier on properties of the thermoplastic water dispersible emulsion sizing agent[J]. Composites Science and Engineering, 2021, (4): 61-65.
doi: 10.19936/j.cnki.2096-8000.20210428.009
[45] SHAYED M A, CHERIF C, HUND R D, et al. Carbon and Glass Fibers Modified by Polysilazane Based Thermal Resistant Coating[J]. Textile Research Journal, 2010, 80(11): 1118-1128.
doi: 10.1177/0040517509357648
[46] 程岩, 王诏田, 罗洪杰, 等. 水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能[J]. 复合材料学报, 2023, 40(2): 817-827.
CHENG Yan, WANG Zhaotian, LUO Hongjie, et al. Water-soluble zirconium hybrid silicone resin sizing for improvement heat resistance of basalt fibre[J]. Acta Materiae Compositae Sinica, 2022, 40(2): 817-827.
[47] 水兴瑶, 刘猛, 朱曜峰, 等. 水性上浆剂对碳纤维表面及碳纤维/环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2016, 33(2): 273-279.
SHUI Xingyao, LIU Meng, ZHU Yaofeng, et al. Effect of waterborne sizing agent on carbon fiber surface and properties of carbon fiber/epoxy composites inter-face[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 273-279.
[48] ZHANG W, YANG C, YAO L, et al. Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47982.
[49] ZHU L, LI Y, ZHANG M, et al. Optimization of interface microstructure of high-strength-high-modulus polyimide fibers composites utilizing waterborne polyamide and hybrid sizing agent[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.51965.
[50] ZHAO Y, LIU F, LU J, et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites[J]. Fibers and Polymers, 2017, 18(8): 1586-1593.
doi: 10.1007/s12221-017-1257-8
[51] DONG Y, ZHU Y, ZHAO Y, et al. Enhance interfacial properties of glass fiber/epoxy composites with environment-friendly water-based hybrid sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 357-367.
doi: 10.1016/j.compositesa.2017.08.016
[52] 李晶波. 耐高温型环氧上浆剂乳液的制备及其对碳纤维的作用[D]. 哈尔滨: 哈尔滨工业大学, 2013: 24-32.
LI Jingbo. The preparation of high temperature epoxy sizing agent emulsion and its effect on carbon fiber[D]. Harbin: Harbin Institute of Technology, 2013: 24-32.
[53] 郑晓强. 碳纤维上浆用耐热型 POSS 改性环氧树脂乳液的研制[D]. 哈尔滨: 哈尔滨工业大学, 2016: 54-73.
ZHENG Xiaoqiang. Preparation of thermal resistant POSS modified epoxy resin emulsion for carbon fiber sizing[D]. Harbin: Harbin Institute of Technology, 2016: 54-73.
[54] ZHANG T, SONG Y, ZHAO Y, et al. Effect of hybrid sizing with nano-SiO2 on the interfacial adhesion of carbon fibers/nylon 6 composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 125-133.
doi: 10.1016/j.colsurfa.2018.05.050
[55] HAO R, JIAO X, ZHANG X, et al. Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber[J]. Applied Surface Science, 2019, 485: 304-313.
doi: 10.1016/j.apsusc.2019.04.184
[56] YUAN X, JIANG J, WEI H, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology, 2021. DOI:201:10.1016/j.compscitech.2020.108496.
[57] LIU L, YAN F, LI M, et al. A novel thermoplastic sizing containing graphene oxide functionalized with structural analogs of matrix for improving interfacial adhesion of CF/PES composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 418-428.
doi: 10.1016/j.compositesa.2018.09.004
[58] LAI M, JIANG L, WANG X, et al. Effects of multi-walled carbon nanotube/graphene oxide-based sizing on interfacial and tribological properties of continuous carbon fiber/poly (ether ether ketone) composites[J]. Materials Chemistry and Physics, 2022. DOI: 10.1016/j.matchemphys.2021.125344.
[59] REN T, ZHU G, HOU X, et al. Improvement of interfacial interactions in CF/PEEK composites by an s-PSF/graphene oxide compound sizing agent[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.51327.
[60] 杨序纲, 吴琪琳. 复合材料的界面行为[M]. 2版. 北京: 化学工业出版社, 2019: 32-36.
YANG Xugang, WU Qilin. Interfacial behaviours in composites[M]. 2nd ed. Beijing: Chemical Industry Press, 2019: 32-36.
[61] YANG J, XIAO Q, LIN Z, et al. Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites[J]. Friction, 2020, 9(5): 1150-1162.
doi: 10.1007/s40544-020-0413-0
[62] KISS P, SCHOEFER J, STADLBAUER W, et al. An experimental study of glass fibre roving sizings and yarn finishes in high-performance GF-PA6 and GF-PPS composite laminates[J]. Composites Part B-Engineering, 2021. DOI: 10.1016/j.compositesb.2020.108487.
[63] 张先亮, 廖俊, 唐红定. 有机硅偶联剂:原理、合成与应用[M]. 北京: 化学工业出版社, 2019: 343-357.
ZHANG Xianliang, LIAO Jun, TANG Hongding. Organosilicon coupling agent:pricinple,synthesis and application[M]. Beijing: Chemical Industry Press, 2019: 343-357.
[64] JIA H, LIU C, QIAO Y, et al. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly (aryl ether nitrile ketone) composites by amino-silane coupling agents[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2021.124028.
[65] TIEFENTHALER A M, URBAN M W. Thermal stability of silane coupling agents on nextel fibres[J]. Composites, 1989, 20(2): 145-150.
doi: 10.1016/0010-4361(89)90642-3
[66] 叶少勇, 王亚溪, 杨硕, 等. POE-g-MAH 对玻纤增强高温尼龙复合材料力学性能的影响[J]. 工程塑料应用, 2019, 47(3): 26-30.
YE Shaoyong, WANG Yaxi, YANG Shuo, et al. Effect of POE-g-MAH on mechanical properties of glass fiber reinforced high temperature polyamide composites[J]. Engineering Plastics Application, 2019, 47(3): 26-30.
[67] PAN Y L, ARKLES B, KENDENBURG J. Preparation of aromatic silanes as high thermal stability coupling agents[J]. Advanced Materials Research, 2013,690-693: 1483-1489.
[68] YOSHINO N, SATO T, MIYAO K, et al. Synthesis of novel highly heat-resistant fluorinated silane coupling agents[J]. Journal of Fluorine Chemistry, 2006, 127(8): 1058-1065.
doi: 10.1016/j.jfluchem.2006.04.017
[69] 杨海荟, 扈艳红, 杜磊, 等. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性[J]. 玻璃钢/复合材料, 2016, (8): 13-21.
YANG Haihui, HU Yanhong, DU Lei, et al. Reinfor cing and toughening of quartz fiber (QF) /silicon-containing arylacetylene (PSA) composites with new silane coupling agent[J]. Fiber Reinforced Plastics/Composites, 2016, (8): 13-21.
[70] YANG T, HU Y H, DENG S F, et al. Synthesis and thermal stability of a novel acetylene end-capped silicon-containing polyimide coupling agent with a silane pendant group[J]. High Performance Polymers, 2019, 31(9-10): 1259-1271.
doi: 10.1177/0954008319843173
[71] 顾渊博, 扈艳红, 杜磊, 等. 聚醚酰亚胺耐热大分子偶联剂增强增韧石英纤维/含硅芳炔复合材料[J]. 高等学校化学学报, 2017, 38(9): 1670-1677.
doi: 10.7503/cjcu20170149
GU Yuanbo, HU Yanhong, DU Lei, et al. Reinforcement and tougheness of quartz fiber /silicon-containing arylacetylene with heat-resistant polyetherimide macromolecular coupling agent[J]. Chemical Journal of Chinese Universities, 2017, 38(9): 1670-1677.
doi: 10.7503/cjcu20170149
[1] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[2] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[3] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[4] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[5] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[6] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[7] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[8] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[9] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[10] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[11] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[12] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[13] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[14] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[15] 段亚弟, 谢巍杰, 邱海鹏, 王晓猛, 王岭, 张典堂, 钱坤. 界面层对三维机织角联锁SiCf/SiC复合材料断裂韧性的影响[J]. 纺织学报, 2023, 44(01): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!