纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 27-34.doi: 10.13475/j.fzxb.20220408201

• 纤维材料 • 上一篇    下一篇

超柔软高吸湿改性聚对苯二甲酸乙二醇酯纤维的制备及其性能

亓晓杰1, 孙莉娜1, 廖海洋1, 马博谋2, 俞建勇2, 王学利2(), 刘修才3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
    3.上海凯赛生物技术研发中心有限公司, 上海 201203
  • 收稿日期:2022-04-27 修回日期:2022-08-12 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 王学利(1968—),男,教授级高级工程师,博士。研究方向为差别化、功能化化学纤维。E-mial:wxl@dhu.edu.cn
  • 作者简介:亓晓杰(1997—),男,硕士生。主要研究方向为改性PET纤维。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(CUSF-DH-2019055)

Preparation and properties of modified polyester fiber for super softness and high hygroscopy

QI Xiaojie1, SUN Li'na1, LIAO Haiyang1, MA Bomou2, YU Jianyong2, WANG Xueli2(), LIU Xiucai3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. Cathay Biotech Inc., Shanghai 201203, China
  • Received:2022-04-27 Revised:2022-08-12 Published:2023-09-15 Online:2023-10-30

摘要:

为改善聚对苯二甲酸乙二醇酯(PET)纤维的柔软性和亲水性能,分别以戊二胺己二酸盐(PA56盐)及其衍生物对己二酸戊二酰胺(APA56)为改性单体,与对苯二甲酸乙二醇酯(BHET)共聚并进行熔融纺丝,制备了2个系列的新型改性PET纤维。借助声速取向度测量仪、X射线衍射仪和纱线强伸仪等对改性PET纤维的性能进行测试和分析。结果表明:随着改性单体摩尔分数的增加,PET纤维的结晶度逐渐降低,力学性能有所下降,但当摩尔分数小于6%时,改性PET纤维保留了较好的力学性能;改性单体摩尔分数为3%~12%时,相比于PET纤维,PA56盐和APA56改性PET纤维的回潮率分别提高了39%~200%和53%~213%,相对弯曲刚度分别降低了18%~71%和40%~88%,APA56较PA56盐改性PET纤维的柔软性更好;改性单体摩尔分数达到6%及以上时,改性聚酯纤维的柔软性基本可达到细羊毛水平。

关键词: 戊二胺己二酸盐, 对己二酸戊二酰胺, 改性聚酯纤维, 柔软性, 吸湿性

Abstract:

Objective Polyethylene terephthalate (PET) fibers have excellent mechanical properties, stable thermal and chemical properties, and are widely used in industrial, home textile, and apparel fields. However, because of its regular macromolecular chain structure and the lack of hydrophilic groups, the softness and moisture absorption of the fibre and fabrics made from it are poor, leading to low wearing comfort. This research aims to improve the softness and high moisture absorption of PET fiber.

Method Two series of modified PET fibers containing different molar fractions (3%, 6%, 9% and 12%) of modified monomers and different drafting multipliers were prepared by melt spinning ethylene terephthalate (BHET) copolymerized with glutaramide adipate (PA56 salt) and its derivative p-adipic acid diamide (APA56), respectively, combined with the two-step method of spinning undrafted yarn followed by progressive drafting. The properties of modified PET fibers were tested and analyzed with the aid of an acoustic velocity orientation meter, an X-ray diffractometer, and a yarn tensiometer.

Results The orientation and crystallinity of modified PET fibers were found lower than those of PET fibers, and the orientation and crystallinity decreased gradually with the increase of the molar fraction of modified monomers, but increased with the increase of the draft multiple (Fig. 1 and Fig. 3). The modified PET fiber was still trigonal as PET and the crystal shape does not change, but the diffraction peak was gradually weakened and the peak broadened as the molar fraction of the modified monomer was increased (Fig. 2). The breaking strength and initial modulus of modified PET fibers also decreased with the increase of the molar fraction of modified monomer, and the strength of fibers decreased while the softness increased. When the molar fraction was below 6%, the breaking strength of fibers could reach more than 2.0 cN/dtex, illustrating better mechanical properties (Fig. 4 and Fig. 5). For the same molar fraction of PA56 salt and APA56 modified PET fiber, the former showed higher breaking strength and initial modulus than the latter at the same drafting times, so the APA56 modified PET fiber became more flexible. The relative bending stiffness test results further showed improved softness of the modified PET fibers, with relative bending stiffness reduced by 18% to 71% and 40% to 88%, respectively(Fig. 6). APA56 show better softness than PA56 salt modified PET fibers, and the softness basically reached the level of fine wool when the molar fraction of modified monomers reached 6% and above. The moisture regain of PA56 salt and APA56 modified PET fibers increased by 39% to 200% and 53% to 213%, respectively, compared with PET fibers when the molar fraction of modified monomers was 3% to 12%. The modification of PA56 salt and APA56 significantly improved the moisture absorption of PET fibers, and the moisture absorption of APA56 modified PET fibers was better (Fig. 7).

Conclusion Two series of modified PET fibers were prepared by melt spinning using PA56 salt and APA56 as the modifying monomer, respectively, for copolymerization modification of PET. Compared with PET fibers, the orientation, crystallinity, and fracture strength of the modified PET fibers were reduced by the introduction of the modified monomers, and the molar fraction of the modified monomers increased, but the presence of flexible methylene chain segments and amide groups in the modified monomers significantly improved the softness and moisture absorption of the fibers, and the softness and moisture absorption of APA56 were better than those of PA56 salt. When the molar fraction of the modified monomer reaches 6% and above, the softness can reach the level of fine wool, and the mechanical property test shows that the fiber with a 6% molar fraction of modified monomer can reach the breaking strength of 2.0 cN/dtex and above, which retains good mechanical properties and can meet the requirements of the service performance, and will provide the possibility of replacing cotton and other natural fibers in the field of clothing in the future. It will provide the possibility of replacing cotton and other natural fibers in the apparel field in the future.

Key words: glutaric diamine adipate, p-adipic acid glutaramide, modified polyester fiber, softness, hydrophilicity

中图分类号: 

  • TQ 342

表1

原材料投料配比"

样品
编号
PTA的量/
mol
EG的量/
mol
PA56盐
占比/%
APA56
占比/%
PET 13 16.9 0 0
PA56-3 13 16.9 3
PA56-6 13 16.9 6
PA56-9 13 16.9 9
PA56-12 13 16.9 12
APA56-3 13 16.9 3
APA56-6 13 16.9 6
APA56-9 13 16.9 9
APA56-12 13 16.9 12

表2

PET纤维的纺丝和牵伸工艺"

样品
编号
螺杆温度/℃ 温度/℃ 牵伸倍数
Ⅰ区 Ⅱ区 Ⅲ区 管道 箱体
PET 270 280 285 290 290 1.8、2.0、2.2
PA56-3 240 270 275 280 280 1.6、1.8、2.0
PA56-6 250 265 265 270 270 1.6、1.8、2.0
PA56-9 250 265 265 270 270 1.6、1.8、2.0
PA56-12 250 260 260 260 260 1.6、1.8
APA56-3 240 260 270 280 280 1.6、1.8、2.0
APA56-6 230 260 265 270 270 1.6、1.8、2.0
APA56-9 230 260 265 270 280 1.6、1.8、2.0
APA56-12 210 230 235 240 240 1.6、1.8

图1

不同牵伸倍数下改性PET纤维的声速取向度"

图2

不同牵伸倍数下改性前后PET纤维的X射线衍射图谱"

图3

不同牵伸倍数下改性前后PET纤维的结晶度"

图4

PET纤维的断裂强度"

图5

PET纤维的初始弹性模量"

图6

PET纤维的相对弯曲刚度"

图7

PET纤维的回潮率"

[1] BOUMA K, REGELINK M, GAYMANS R J. Crystallization of poly(ethylene terephthalate) modified with codiols[J]. Journal of Applied Polymer Science, 2001, 80(14): 2676-2682.
doi: 10.1002/app.v80:14
[2] QI Mengyan, ZHENG Liuchun, LI Chuncheng, et al. The yellowing mechanism of polyesteramide based on poly(ethylene terephthalate) and polyamide 6[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.49986.
[3] SEPE Michael. 追溯尼龙和聚酯纤维的历史[J]. 现代塑料, 2022 (2): 37-38.
SEPE Michael. Tracing the history of nylon and polyester fibers[J]. Modern Plastics, 2022(2): 37-38.
[4] 韩春艳, 陈建梅, 戴钧明, 等. 仪纶的定性鉴别方法研究[J]. 合成技术及应用, 2017, 32(2): 56-61.
HAN Chunyan, CHEN Jianmei, DAI Junming, et al. Study on qualitative identification of YILON[J]. Synthesis Technology and Applications, 2017, 32(2): 56-61.
[5] WANG Xueli, XU Weihai, LOU Xueqin, et al. Synthesis and structure analysis of polyesteramides modified with bio-based diaminopentane hexanedioic salt[J]. E-Polymers, 2017, 17(3): 235-242.
doi: 10.1515/epoly-2016-0085
[6] 张腾飞, 石禄丹, 胡红梅, 等. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(6): 1-7.
ZHANG Tengfei, SHI Ludan, HU Hongmei, et al. Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester[J]. Journal of Textile Research, 2019, 40(6): 1-7.
doi: 10.1177/004051757004000101
[7] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(4): 26-32.
SUN Chaoxu, LIU Xiucai. Research progress of bio-based polyamide 56 fibers in textile applications[J]. Journal of Textiles Research, 2021, 42(4): 26-32.
[8] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2009:126-127.
YU Weidong, CHU Caiyuan. Textile physics[M]. Shanghai: Donghua University Press, 2009:126-127.
[9] 任夕娟, 孟家明. PET纤维结晶度测定的研究[J]. 合成技术及应用, 1998 (4): 1-6.
REN Xijuan, MENG Jiaming. Study on the determination of crystallinity of PET fibers[J]. Synthesis Technology and Applications, 1998(4): 1-6.
[10] 朱坚, 尚小愉, 王滢, 等. 螺环二醇改性PET共聚酯的合成及性能研究[J]. 化工进展, 2022, 41(11):6003-6010.
doi: 10.16085/j.issn.1000-6613.2022-0066
ZHU Jian, SHANG Xiaoyu, WANG Ying, et al. Synthesis and properties of spirocyclic diol-modified PET copolyesters[J]. Chemical Progress, 2022, 41(11):6003-6010.
[11] 金惠芬, 曾凡龙, 孙桐. 化学组成对PBT/PET共聚酯晶型的影响[J]. 合成纤维工业, 1989, 12(3): 20-23.
JIN Huifen, ZENG Fanlong, SUN Tong. Effect of chemical composition on the crystalline shape of PBT/PET copolyester[J]. Synthetic Fiber Industry, 1989, 12(3): 20-23.
[12] 吉鹏. 亲水共聚酯纤维的制备及其结构性能研究[D]. 上海: 东华大学, 2016:3-4.
JI Peng. Preparation of hydrophilic copolyester fibers and their structural properties[D]. Shanghai: Donghua University, 2016:3-4.
[13] 郝莱丹, 鲍红坤, 汤廉, 等. 基于PA6预聚物的聚酰胺酯的制备及结构性能研究[J]. 合成纤维工业, 2018, 41(4): 6-9.
HAO Laidan, BAO Hongkun, TANG Lian, et al. Preparation and structural properties of polyamide esters based on PA 6 prepolymer[J]. Synthetic Fiber Industry, 2018, 41(4): 6-9.
[14] 周蓉, 俞建勇, 王学利, 等. 亲水改性共聚酯的合成及其性能[J]. 东华大学学报(自然科学版), 2018, 44(6): 889-895,902.
ZHOU Rong, YU Jianyong, WANG Xueli, et al. Synthesis of hydrophilic modified copolyesters and their properties[J]. Journal of Donghua University (Natural Science), 2018, 44(6): 889-895,902.
[1] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[2] 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7.
[3] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[4] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[5] 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019, 40(04): 72-76.
[6] 万爱兰, 缪旭红, 马丕波, 陈晴, 陈方芳. 功能性纬编斜纹牛仔面料的设计及其性能[J]. 纺织学报, 2019, 40(04): 55-59.
[7] 闫红芹 徐文正 严庆帅 郭棋盛. 预处理方法对丝瓜络纤维性能的影响[J]. 纺织学报, 2018, 39(12): 72-77.
[8] 王旭 冯向伟 李亚娟. 织物吸湿性对织物和皮肤间动摩擦力的影响[J]. 纺织学报, 2017, 38(12): 54-59.
[9] 徐晓霞 危惠敏 付少举 张佩华. 单纤维柔软性的新型测试方法与优化[J]. 纺织学报, 2017, 38(11): 27-31.
[10] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[11] 马娟 金剑 金欣 肖长发. 亲水抗静电共混聚酯母粒的制备及其性能[J]. 纺织学报, 2017, 38(07): 6-10.
[12] 王晓梅 陈才深. 聚乳酸/聚丙烯共混纺粘纤维的制备及其性能[J]. 纺织学报, 2017, 38(01): 13-16.
[13] 刘昀庭 张红霞 贺荣 祝成炎 王浙峰 徐青艺. 导水型再生涤纶织物的制备及其性能[J]. 纺织学报, 2016, 37(4): 96-100.
[14] 武海良 姚一军 沈艳琴 . 纺织浆料的吸湿与放湿规律[J]. 纺织学报, 2016, 37(3): 72-77.
[15] 崔玉梅 程隆棣 肖远淑. 云南野生牛角瓜纤维的吸湿与吸水性[J]. 纺织学报, 2016, 37(07): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!