纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 43-51.doi: 10.13475/j.fzxb.20220400401

• 纤维材料 • 上一篇    下一篇

热定形工艺对高强型聚酯工业丝结构性能的影响

张颖1, 宋明根2, 姬洪2, 陈康1(), 张先明1   

  1. 1.浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
    2.浙江尤夫高新纤维股份有限公司, 浙江 湖州 313017
  • 收稿日期:2022-04-01 修回日期:2022-12-16 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 陈康(1993—),男,讲师。主要研究方向为纤维成形工艺、结构与性能。E-mail:chenkang@zstu.edu.cn
  • 作者简介:张颖(1995—),女,硕士。主要研究方向为聚酯工业丝服役特性及其构效关系研究。
  • 基金资助:
    浙江省重点研发计划项目(2020C01143);浙江省重点研发计划项目(2021C01020);中国纺织工业联合会科技指导性计划项目(2021003)

Influence of heat-setting process on structure and properties of high-tenacity polyester industrial yarns

ZHANG Ying1, SONG Minggen2, JI Hong2, CHEN Kang1(), ZHANG Xianming1   

  1. 1. National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. Zhejiang Unifull Industrial Fiber Co., Ltd., Huzhou, Zhejiang 313017, China
  • Received:2022-04-01 Revised:2022-12-16 Published:2023-09-15 Online:2023-10-30

摘要:

为探究不同热定形温度获得的高强型聚酯工业丝性能差异的内在结构因素,对3种高强型聚酯工业丝的结构性能进行对比。采用小角X射线散射和广角X射线衍射方法对其多尺度微观结构进行研究,结合力学性能及热收缩等结果,明确不同热定形工艺对高强型工业丝结构性能的影响。结果表明:热定形温度主要影响聚酯工业丝非晶区取向和片晶结构;相比于高强中缩(HTMS)和高强(HT)聚酯工业丝,高强低伸型(HTLE)聚酯工业丝的热定形温度低,高倍牵伸产生的伸直非晶区分子链在较低热定形温度下并未及时排入晶格形成结晶,而发生了小幅的回复,导致HTLE聚酯工业丝表现出非晶区取向高、结晶度低、晶粒尺寸小与片层倾斜角较大的结构特点,从而使断裂伸长率最小、初始弹性模量最大、尺寸稳定性差。

关键词: 高强型聚酯工业丝, 结晶结构, 片晶结构, 小角X射线散射, 广角X射线衍射, 力学性能, 热定形

Abstract:

Objective The continuous expansion of the application field of polyester industrial fiber puts forward more detailed requirements for its performance, and the relationship between process-structure-performance needs to be further clarified. In order to explore the intrinsic structural factors of the differences in the application fields of high-tenacity polyester industrial yarns obtained at different heat-setting temperatures, the structure and properties of three high-tenacity polyester industrial yarns were compared.

Method Synchrotron radiation small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) were adopted to study its multi-scale microstructure. Establish a multi-level structure analysis method from macro to micro was established, and the influences of different heat-setting processes on the structure and properties of high-tenacity industrial yarns were clarified.

Results The fiber spinning process differences between the three high-tenacity polyester industrial yarns were reflected in the difference of heat-setting temperatures (Tab. 1). Compared with high-tenacity medium-shrinkage (HTMS) and high-tenacity (HT) polyester industrial yarns, high-tenacity low-elongation (HTLE) was shown to have lower heat-setting temperature, resulting in higher amorphous orientation, lower crystallinity, smaller crystallite size, smaller long period and larger tilting angle of crystalline lamellae (Tab. 4 and Tab. 5). Because the microstructures with high crystallinity and high orientation are formed under the condition of high drafting ratio, the breaking strength of the three industrial yarns are relatively high, and the differences are not obvious(Tab. 2). The mechanical properties are different in elongation at break, initial modulus, elongation at a specific tenacity of 4.0 cN/dtex (Easl-4) and tenacity at a specific elongation of 5% (Lase-5). HTLE polyester has the smallest elongation at break, the largest initial modulus, the largest thermal shrinkage, the worst dimensional stability, and the highest α transition temperature. HTLE has the highest sound velocity orientation and small deformation during stretching, and thus has the lowest elongation at break. The amorphous orientation of the fibers is the key structural factor determining the elongation at break due to the small difference in the crystallite orientation of the three industrial yarns. The initial modulus appears in the first stage of the stretching process, which is mainly related to the amorphous region. With the increase of the amorphous orientation, the initial modulus also increases. Therefore, the amorphous orientation of HTLE is the largest, and its initial modulus is the largest. The heat-setting temperature of HTLE is low, the fiber shrinkage is small, the molecular orientation is large, and the thermal shrinkage is maximum (Tab. 3). In addition, crystallization will form a cross-linking effect, limiting the movement of molecular chains, and also has an impact on the thermal shrinkage performance of the fiber, therefore, crystallinity of HTLE is low, the crystallite size is small, and the thermal shrinkage is the largest. The dimensional stability refers to the sum of the Easl-4 and thermal shrinkage rate, and the smaller the sum is, the better the dimensional stability is. In addition, the tilting angle of crystalline lamellae also has a certain influence. When angle is small, it can be considered that the fiber has a regular structure and good dimensional stability. HTMS has a smaller thermal shrinkage rate and a smaller tilting angle of crystalline lamellae, and thus has good dimensional stability (Tab. 3). The higher the glass transition temperature is, the higher the temperature at which the molecular chains in the amorphous region begin to have thermal motion, the larger the chain binding, the smaller the activity capacity. HTLE has the highest amorphous orientation, which limits the movement of molecular chain, resulting in the highest Tg (Fig. 3).

Conclusion The heat-setting temperature mainly affects the amorphous orientation and the lamellar structure of polyester industrial yarns. Compared with HTMS and HT, HTLE has the lowest heat-setting temperature, and the stretched amorphous molecular chains produced by high draw ratio didn't enter the crystal lattice to form crystallization, and occurred a small recovery at low heat-setting temperatures, which causes HTLE industrial yarns to show the structural characteristics of high amorphous orientation, low crystallinity, small crystallite size and large tilting angle of crystalline lamellae, resulting in the lowest ultimate elongation, the highest initial modulus, the worst dimensional stability.

Key words: shigh-tenacity polyester industrial fiber, crystalline structure, lamellar structure, small-angle X-ray scattering, wide-angle X-ray diffraction, mechanical property, heat-setting process

中图分类号: 

  • TS102

表1

3种高强型聚酯工业丝的规格及纺丝工艺条件"

样品
类型
特性黏度/
(dL·g-1)
重均分子量
Mw/(104 g·mol-1)
数均分子量
Mn/(104 g·mol-1)
分子质量分布
(PDI)
纺丝速度/
(m·min-1)
牵伸
倍率
紧张热定形
温度/℃
松弛热定形
温度/℃
HTMS 0.944 4.6 3.0 1.5 500~600 5.5~6.5 247 170
HT 0.959 4.8 3.2 1.5 500~600 5.5~6.5 235 155
HTLE 0.959 4.6 2.9 1.6 500~600 5.5~6.5 210 110

表2

3种高强型聚酯工业丝的力学性能参数"

样品
类型
线密
度/dtex
断裂
强力/
N
断裂
强度/
(cN·
dtex-1)
断裂
伸长
率/%
初始弹
性模量/
(cN·
dtex-1)
Easl-4/
%
Lase-5/
(cN·
dtex-1)
HTMS 1 132.1 95.79 8.46 13.77 105.44 6.04 3.22
HT 1 126.7 94.73 8.41 13.42 106.31 5.75 3.43
HTLE 1 124.3 95.15 8.46 10.75 115.26 4.51 4.49

图1

3种高强型聚酯工业丝的应力-应变曲线"

图2

3种高强型聚酯工业丝的热收缩性能"

表3

3种高强型聚酯工业丝在不同温度下的热收缩率及热收缩力"

样品
类型
热收缩率/% 热收缩力/
(cN·dtex-1)
尺寸
稳定性/%
140 ℃ 180 ℃ 140 ℃ 180 ℃ 140 ℃ 180 ℃
HTMS 2.64 5.09 0.144 0.197 8.68 11.13
HT 3.63 6.97 0.181 0.255 9.38 12.72
HTLE 5.90 10.34 0.348 0.443 10.41 14.85

图3

3种高强型聚酯工业丝的损耗角正切-温度曲线"

图4

3种高强型聚酯工业丝的扫描电镜照片"

图5

3种高强型聚酯工业丝的SAXS图"

表4

3种高强型聚酯工业丝的SAXS结构参数"

样品
类型
q1, max/
nm-1
长周期/nm 晶区厚
LN/
nm
非晶区
厚度LA/
nm
片晶
直径
LE/
nm
片晶
倾斜角
Φ /
(°)
LM' LM
HTMS 0.362 17.3 16.4 8.8 7.6 7.7 49.9
HT 0.380 16.5 15.9 8.8 7.1 7.3 52.4
HTLE 0.384 16.4 15.5 8.3 7.2 6.8 56.0

图6

3种高强型聚酯工业丝的WAXD图"

图7

3种高强型聚酯工业丝的积分曲线"

表5

3种高强型聚酯工业丝的结晶结构参数"

样品
类型
结晶度/% 晶粒尺寸/nm 晶区
取向
声速
取向
非晶区
取向
Xc
(XRD法)
Xd
(DSC法)
(010) (100)
HTMS 63.2 47.4 5.04 3.23 0.939 0.902 0.756
HT 62.8 45.5 4.59 3.10 0.942 0.920 0.810
HTLE 61.9 43.7 4.21 1.68 0.947 0.929 0.836

图8

3种高强型聚酯工业丝的红外光谱曲线"

[1] 王玉萍. 涤纶工业丝行业发展现状及应用研究[J]. 合成纤维, 2011, 40(10): 1-6.
WANG Yuping. Development status and application research of polyester industrial yarn industry[J]. Synthetic Fiber in China, 2011, 40(10): 1-6.
[2] CHEN K, LIU Y, JI H, et al. The evaluation of structure and properties of high-strength polyester industrial fibers with different polycondensation processes[J]. Journal of The Textile Institute, 2021, 112(5): 727-732.
doi: 10.1080/00405000.2020.1777623
[3] ABBASI M, MOJTAHEDI M R M, KHOSROSHAHI A. Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles[J]. Journal of Applied Polymer Science, 2007, 103(6): 3972-3975.
doi: 10.1002/app.v103:6
[4] LIU Y, YIN L, ZHAO H, et al. Insights into process-structure-property relationships of poly(ethylene terephthalate) industrial yarns by synchrotron radiation WAXD and SAXS[J]. Journal of Applied Polymer Science, 2015, 132(36): 42512-42522.
[5] SAMUI B K, PRAKASANN M P, RAMESH C, et al. Structure-property relationship of different types of polyester industrial yarns[J]. Journal of The Textile Institute, 2013, 104(1): 35-45.
doi: 10.1080/00405000.2012.693277
[6] CHEN K, YU J, LIU Y, et al. Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature[J]. Polymer International, 2019, 68(3):555-563.
doi: 10.1002/pi.2019.68.issue-3
[7] 葛陈程, 吕汪洋, 石教学, 等. 应用二维X射线衍射法测定涤纶工业丝结晶和取向行为[J]. 纺织学报, 2018, 39(3): 19-25.
GE Chencheng, LÜ Wangyang, SHI Jiaoxue, et al. Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction[J]. Journal of Textile Research, 2018, 39(3): 19-25.
[8] TANG Y, JIANG Z, MEN Y, et al. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study[J]. Polymer, 2007, 48(17): 5125-5132.
doi: 10.1016/j.polymer.2007.06.056
[9] MURTHY N S, GRUBB D T, ZERO K. Structural implications of the elliptical form of small-angle reflections in oriented semicrystalline polymers[J]. Macromolecules, 2000, 33(3): 1012-1021.
doi: 10.1021/ma9911501
[10] WANG Z G, HSIAO B S, FU B X, et al. Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering[J]. Polymer, 2000, 41(5):1791-1797.
doi: 10.1016/S0032-3861(99)00327-4
[11] ŠUJICA M Ž, SMOLE M S. Structure-mechanical properties relationship of poly(ethylene terephthalate) fibers[J]. Journal of Applied Polymer Science, 2003, 89(12): 3383-3389.
doi: 10.1002/(ISSN)1097-4628
[12] CHE J, LOCKER C R, LEE S, et al. Plastic deformation of semicrystalline polyethylene by X-ray scattering: comparison with atomistic simulations[J]. Macromolecules, 2013, 46(13): 5279-5289.
doi: 10.1021/ma4005007
[13] YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016, 133(41): 44078-44088.
[14] 汪潇, 王云, 潘琪, 等. 涤纶工业丝的晶态结构与性能的关系[J]. 合成纤维工业, 2012, 35(1): 35-38.
WANG Xiao, WANG Yun, PAN Qi, et al. Relationship between crystalline structure and properties of PET industrial yarn[J]. China Synthetic Fiber Industry, 2012, 35(1): 35-38.
[15] GUZATTO R, ROZA M, DENARDIN E, et al. Dynamical, morphological and mechanical properties of poly(ethylene terephthalate) deformed by plane strain compression[J]. Polymer Testing, 2009, 28(1):24-29.
doi: 10.1016/j.polymertesting.2008.09.004
[16] 孟家明, 任夕娟, 曾宪春, 等. 涤纶短纤维在纺程中的XRS、DMA研究[J]. 高分子材料科学与工程, 1999, 15(4): 114-117.
MENG Jiaming, REN Xijuan, ZENG Xianchun, et al. Research on XRS and DMA of polyester staple fibers in spinning process[J]. Polymer Materials Science and Engineering, 1999, 15(4): 114-117.
[17] 刘亚涛, 赵慧荣, 宋光坤, 等. 高模低缩涤纶工业丝的结构与性能比较[J]. 上海塑料, 2015(1): 31-35.
LIU Yatao, ZHAO Huirong, SONG Guangkun, et al. Structures-property comparsion of high modulus and low shrinkage polyester industrial yarns[J]. Shanghai Plastics, 2015(1): 31-35.
[18] ELLIS G, MARCO C, M GÓMEZ. Highly resolved transmission infrared microscopy in polymer science[J]. China Infrared Physics & Technology, 2004, 45(5/6): 349-364.
[19] 全勇, 韦亚兵. 傅里叶变换显微红外光谱技术在涤纶中的应用[J]. 合成纤维工业, 2007, 30(2): 63-65.
QUAN Yong, WEI Yabing. Application of fourier transform infrared microscopy in polyester[J]. China Synthetic Fiber Industry, 2007, 30(2): 63-65.
[20] 邹家熊, 于金超, 张烨, 等. 高强低伸型聚酯工业丝受热条件下的应用特性变化[J]. 合成纤维, 2019, 48(2): 7-11.
ZOU Jiaxiong, YU Jinchao, ZHANG Ye, et al. Application characteristics of high strength and low stretch polyester industrial yarn under heating conditi-ons[J]. Synthetic Fiber in China, 2019, 48(2): 7-11.
[21] JING L, SHAN Y W. Analysis and discussion of the modulus-strain curves of poly(ethylene terephthalate) and polyamide industrial yarns[J]. Journal of Applied Polymer Science, 2005, 95(4): 859-862.
doi: 10.1002/app.v95:4
[22] 李鑫. 轮胎用聚酯工业丝的性能研究[J]. 橡胶工业, 2004, 51(9): 537-540.
LI Xin. Study on the properties of polyester industrial yarn for tires[J]. China Rubber Industry, 2004, 51(9): 537-540.
[23] 周正华, 王希岳. 涤纶工业用丝的尺寸稳定性及力学松驰[J]. 合成技术及应用, 1998, 13(3): 13-18.
ZHOU Zhenghua, WANG Xiyue. Dimensional stability and mechanical relaxation of polyester industrial yarn[J]. Synthetic Technology & Application, 1998, 13(3): 13-18.
[24] 黄凯, 程嘉祺, 张金德. 高性能聚酯工业丝的生产工艺研究[J]. 合成纤维, 2005, 34(1): 25-28.
HUANG Kai, CHENG Jiaqi, ZHANG Jinde. Study on the production techniques of high performance polyester industrial yarn[J]. Synthetic Fiber in China, 2005, 34(1): 25-28.
[1] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[2] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[3] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[4] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[5] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[6] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[7] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[8] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[9] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[10] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[11] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[12] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[13] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[14] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[15] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!