纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 91-98.doi: 10.13475/j.fzxb.20220309501

• 纺织工程 • 上一篇    下一篇

针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响

孙明涛1, 陈成玉1, 闫伟霞1,2, 曹珊珊1, 韩克清1()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 分析测试中心, 上海 201620
  • 收稿日期:2022-03-29 修回日期:2022-06-29 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 韩克清(1975—),女,教授,博士。主要研究方向为生物可降解纤维及其复合材料。E-mail:hankeqing@dhu.edu.cn
  • 作者简介:孙明涛(1997—),男,博士生。主要研究方向为生物可降解纤维材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309300)

Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets

SUN Mingtao1, CHEN Chengyu1, YAN Weixia1,2, CAO Shanshan1, HAN Keqing1()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Analysis and Testing Center, Donghua University, Shanghai 201620, China
  • Received:2022-03-29 Revised:2022-06-29 Published:2023-09-15 Online:2023-10-30

摘要:

为使生物质可降解复合材料在汽车内饰领域替代传统石油基材料,以黄麻纤维(JF)、聚乳酸(PLA)短纤为原料,通过纤网模压成型法制备了黄麻纤维/聚乳酸短纤(JF/PLA)复合板,着重探讨了针刺过程中不同针刺频率对复合板结构及性能的影响。结果表明,当针刺频率为300 次/min时,复合板的力学性能达到最大,其纵向拉伸强度、弯曲强度及缺口冲击强度分别为14.54 MPa、33.02 MPa、9.54 kJ/m2。进一步增加针刺频率,纤网中部分黄麻纤维会发生断裂,造成复合板力学性能出现下降。另外,针刺频率的提高使得复合板吸水率与生物降解速率下降,同时复合板的阻燃效果得到改善,有利于JF/PLA复合板在汽车内饰领域的推广应用。

关键词: 纤网模压成型, 黄麻纤维/聚乳酸短纤复合材料, 针刺频率, 力学性能, 生物降解性能, 汽车内饰复合材料

Abstract:

Objective In order to use biomass degradable composite materials to replace conventional petroleum-based materials in the field of automotive interiors, jute fiber reinforced polylactic acid (JF/PLA) composite sheets were prepared by web molding technique, where needling reinforcement was believed beneficial to the infiltration and encapsulation of PLA matrix on jute fiber during the web forming process. The needling frequency has a certain influence on the structure and properties of the final obtained JF/PLA composite sheets, which has rarely been reported. This paper explores the influence of needling frequency on the structure and performance of composite sheets.

Method PLA short fiber of 60% mass fraction and jute fiber of 40% mass fraction were used for preparing JF/PLA composite sheets by web forming technique, where the needling frequency was selected at 280, 300 and 320 times/min. The volume densities of the JF/PLA composite sheets were 2.50, 2.81, and 2.92 g/cm3 corresponding to the 280, 300, and 320 times/min needling frequencies, respectively. Scanning electron microscope, universal testing machine, impact testing machine, water-absorbency tests, combustibility tests and biodegradability tests were used for exploring the influence of the needling reinforcement frequency on properties of PLA/JF composite sheets.

Results The mechanical properties of JF/PLA composite sheets increased first and then decreased with the increase of needling frequency. When the needling frequency was 300 times/min, the mechanical properties of the JF/PLA composite sheets were optimal, and the vertical tensile strength, the flexural strength and notched impact strength were 14.54 MPa, 33.02 MPa and 9.54 kJ/m2, respectively. However, the high needling frequency seemed to cause decline in the mechanical properties of JF/PLA composite sheets due to the fracture of part of the jute fibers. The water-absorbency of JF/PLA composite sheets gradually decreased with the increase of needling frequency (Fig. 6), because the increase of needling frequency caused the further entanglement between the jute fibers and PLA matrix, which made the internal structure of the composite sheets denser after hot-pressing. However, the microporous structure was uniformly distributed to a great extent, making the water absorption rate decrease. The horizontal burning test results of JF/PLA composite sheets with different needling frequencies showed a gradually decreasing as the needling frequency increases (Tab. 1). This may be because the higher needling frequency made the internal structure of the composite sheets more compact with reduced orifice size was, and the flame retardant effect was better. After 4 months of soil burying, the mass loss rate of PLA/JF composite sheets showed a gradual decrease with the increasing needling frequency. This was due to the tighter network structure of the jute fiber in the composite sheets caused by the high needling frequency and by the increased bonding ability between jute fiber and PLA matrix. The natural degradation process made the composite weaker and the mass loss rate reduced.

Conclusion The needling frequency, which is an important parameter in the preparation of composite materials by web forming technique, has not been much reported. In this work, three different needling frequencies of JF/PLA composite sheets were prepared. The results demonstrated that the mechanical properties were optimal at a needling frequency of 300 times/min, and the excessive needling frequency was not favorable to the mechanical properties of the composite sheets. Moreover, the increase of needling frequency facilitates reducing the water-absorbency and biodegradability and to improve the flame retardancy of the composite sheets. This study provides a theoretical basis and application guidance for controlling the mechanical properties, water-absorbency, biodegradability and flame retardancy of JF/PLA composite sheets by needling frequency, and expands the application possibilities of JF/PLA composite sheets used as automotive interior materials.

Key words: web forming technique, jute fiber/polylactic acid composite, needling frequency, mechanical property, biodegradability, automotive interior composite material

中图分类号: 

  • TB332

图1

黄麻纤维/聚乳酸短纤复合板的制备工艺流程"

图2

不同针刺频率的JF/PLA复合板不同放大倍数下的SEM照片"

图3

针刺频率对JF/PLA复合板拉伸性能的影响"

图4

针刺频率对JF/PLA复合板冲击强度的影响"

图5

针刺频率对JF/PLA复合板弯曲强度的影响"

图6

不同针刺频率的JF/PLA复合板的吸水性与时间的关系曲线"

表1

不同针刺频率的JF/PLA复合板的水平燃烧测试结果"

针刺频率/
(次·min-1)
燃烧
距离/mm
燃烧
时间/s
燃烧速度/
(mm·min-1)
280 68.3 186 22.0
300 62.6 179 21.0
320 55.6 172 19.4

图7

JF/PLA复合板经过4个月土埋前后的表面SEM照片"

[1] KOUSHIK G, BRAD H J. Roadmap to biodegradable plastics-current state and research needs[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(18): 6170-6187.
doi: 10.1021/acssuschemeng.1c00801
[2] 颜景丹, 王国未, 马鸿昌, 等. 麻纤维/聚乳酸复合板材自然老化试验及在汽车应用评价[J]. 汽车工艺与材料, 2022, 12: 59-63.
YAN Jingdan, WANG Guowei, MA Hongchang, et al. Natural aging performance and automotive application evaluation for hemp fiber/polylactic acid composite panels[J]. Automobile Technology & Material, 2022, 12: 59-63.
[3] WU Y, XIA C, CAI L, et al. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound[J]. Journal of Cleaner Production, 2018, 184, 92-100.
doi: 10.1016/j.jclepro.2018.02.257
[4] HITESH J, PIYUSH J. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications[J]. Journal of Reinforced Plastics and Composites, 2019, 38(10): 441-453.
doi: 10.1177/0731684419828524
[5] NURAZZI N M, ASYRAF M R M, RAYUNG M, et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments[J]. Polymer, 2021. DOI: 10.3390/polym13162710.
[6] 汪泽幸, 吴波, 李帅, 等. 循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10): 74-80.
WANG Zexing, WU Bo, LI Shuai, et al. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation[J]. Journal of Textile Research, 2020, 41(10): 74-80.
[7] MD S, MD A A F, KADIR B, et al. Plant-based natural fibre reinforced composites: a review on fabrication, properties and applications[J]. Coatings, 2020. DOI: 10.3390/coatings10100973.
[8] 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048.
HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048.
[9] TAO Y, NING J, YAN L. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64: 139-146.
doi: 10.1016/j.compositesa.2014.05.008
[10] 郭耀伟, 蔡明. 天然纤维增强复合材料的应用及发展前景[J]. 纺织导报, 2021(5): 86-90.
GUO Yaowei, CAI Ming. Application and development prospect of natural fiber reinforced plastics[J]. China Textile Leader, 2021(5): 86-90.
[11] 焦学健, 李丽君, 董抒华, 等. 汽车内饰用PP/黄麻纤维复合材料力学性能[J]. 工程塑料应用, 2017, 45(7): 13-16.
JIAO Xuejian, LI Lijun, DONG Shuhua, et al. Research progress of PP/hemp fiber composites[J]. Engineering Plastics Application, 2017, 45(7): 13-16.
[12] 周勇, 孙筱辰, 张兴卫, 等. 非织造黄麻纤维复合材料的制备与吸声性能研究[J]. 功能材料, 2016, 11(47): 131-135.
ZHOU Yong, SUN Xiaochen, ZHANG Xingwei, et al. Study on manufacturing technology and acoustic property of nonwoven jute fibers composites[J]. Journal of Functional Material, 2016, 11(47): 131-135.
[13] CHEN C, TIAN Y, LI F, et al. Toughening polylactic acid by a biobased poly(butylene 2,5-furan-dicarboxylate)-b-poly(ethylene glycol) copolymer: balanced mechanical properties and potential biodegradability[J]. Biomacromolecules, 2021, 22(2): 374-385.
doi: 10.1021/acs.biomac.0c01236
[14] SUN M, HUANG S, YU M, et al. Toughening modification of polylactic acid by thermoplastic silicone polyurethane elastomer[J]. Polymers, 2021. DOI: 10.3390/polym13121953.
[15] HE L, SONG F, GUO Z, et al. Toward strong and super-toughened PLA via incorporating a novel fully bio-based copolyester containing cyclic sugar[J]. Composites Part B-Engineering, 2021. DOI: 10.1016/j.compositesb.2020.108558.
[16] ZHANG H, MING R, YANG G, et al. Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites[J]. Polymer Engineering and Science, 2015, 55(11): 2553-2558.
doi: 10.1002/pen.24147
[17] 程平, 彭勇, 汪馗, 等. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 237-242.
CHENG Ping, PENG Yong, WANG Kui, et al. Quasi static penetration property of 3D printed continuous ramie-fiber reinforced polylactic acid composites[J]. Materials Reports, 2023, 37(1): 237-242.
[18] CHUNG T, PARK J, LEE H, et al. The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation[J]. Applied Sciences, 2018. DOI: 10.3390/app8030376.
[19] 何宏, 李华冠, 陈书云. 汽车内饰用麻纤维增强PET/PP非织造复合材料的制备与性能研究[J]. 玻璃纤维, 2017(5): 22-26.
HE Hong, LI Huaguan, CHEN Shuyun. Preparation and properties of jute fiber reinforced PET/PP nonwoven composite material used for car interior[J]. Fiber Glass, 2017(5): 22-26.
[20] 刘俊威, 童亮, 王晨, 等. 汽车内饰非金属材料阻燃改性研究进展[J]. 中国塑料, 2020, 34(4): 102-108.
doi: 10.19491/j.issn.1001-9278.2020.04.017
LIU Junwei, TONG Liang, WANG Chen, et al. Research progress in flame-retardant modification of non-metallic interior materials[J]. China Plastics, 2020, 34(4): 102-108.
doi: 10.19491/j.issn.1001-9278.2020.04.017
[1] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[2] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
[3] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[4] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[5] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[6] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[7] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[8] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[9] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[10] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[11] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[12] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[13] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[14] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[15] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!