纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 1-8.doi: 10.13475/j.fzxb.20220505601

• 纤维材料 •    下一篇

原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能

李睿1, 王梦柯2, 于春晓1, 郑晓頔1, 邱志成1(), 李志勇1, 武术方1   

  1. 1.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    2.东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2022-05-17 修回日期:2022-10-26 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 邱志成(1984—),男,正高级工程师,博士。主要研究方向为合成纤维材料。E-mail:gcqzchn@163.com
  • 作者简介:李睿(1985—),男,工程师,硕士。主要研究方向为合成纤维材料。
  • 基金资助:
    国家重点研发计划项目(2020YFB0311400)

Fabrication and properties of polyamide 6/carbon black composite fibers via in situ polymerization

LI Rui1, WANG Mengke2, YU Chunxiao1, ZHENG Xiaodi1, QIU Zhicheng1(), LI Zhiyong1, WU Shufang1   

  1. 1. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2022-05-17 Revised:2022-10-26 Published:2023-10-15 Online:2023-12-07

摘要:

为开发高黑度的原液着色聚酰胺6(PA6)纤维,将经原位聚合法制备的炭黑质量分数为1.0%~3.0%的系列PA6/炭黑(PA6/CB)复合材料进行熔融纺丝制备PA6/CB复合纤维,并对复合材料的形貌结构、热性能、晶型结构以及纤维的力学性能、取向度、色度值和色牢度进行表征。结果表明:经原位聚合法引入的炭黑在原液着色PA6/CB复合材料和纤维中分散均匀;炭黑在基材中起异相成核作用,添加炭黑的PA6/CB复合材料的结晶度和结晶温度均得到提高;炭黑可提升复合材料的热稳定性,并可促进PA6形成热力学性能更稳定的α晶型;随着炭黑质量分数的提高,PA6/CB复合纤维的断裂强度先提高后逐渐下降,当炭黑质量分数为1.0%时达到最大,为4.07 cN/dtex; PA6/CB复合纤维的取向度均高于纯PA6纤维;炭黑质量分数越高,PA6/CB复合纤维的颜色越黑,但其质量分数超过2%后纤维的黑度提升不明显。

关键词: 原位聚合, 聚酰胺6, 炭黑, 熔融纺丝, 原液着色, 聚酰胺6/炭黑复合纤维

Abstract:

Objective The improvement in polyamide 6(PA6)-based matrix properties by filling functional nanomaterials and application of PA6-based fiber have attracted much attention due to the recent rapid development in nanotechnology. Among all these filling nanomaterials, carbon black(CB)has been widely used as an ideal filling material due to its relatively small particle size and good compatibility with PA6-based matrix. In order to fabricate dope-dyed polyamide 6 filament with deep blackness, a series of PA6/CB composites and fibers were prepared via in situ polymerization and subsequently melt spinning.

Method PA6/CB composites with carbon black content of 1%-3% were fabricated via in-situ polymerization by using highly dispersed aqueous carbon black slurry as modifiers, and melt-spinning were employed to achieve dope-dyed PA6/CB composite fibers. Microscopic structure, melting crystallization parameters and crystallization behavior and thermal stability of composites and/or fibers were determined using scanning electron micro-scope (SEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) respectively. Mechanical properties, orientation factor, chroma value and color fastness were then used to characterize the resultant structure and properties of fibers.

Results Quenching the surface of PA6/CB composites resulted in tougher surface than pure PA6 composite, without significant agglomerations, indicating that the carbon black was dispersed reasonably well (Fig. 1). A mostly smooth quenching surface was observed with relatively lower carbon black content, while staircase structure was formed when content of carbon black reached 3.0%. Similar results were witnessed on the surface of PA6/CB fibers when a smooth surface without aggregation of carbon black (Fig. 2). Combined with the curves obtained by DSC and crystallinity parameters calculated with DSC data(Tab. 1), carbon black had hardly any influence on the melting peak of PA6/CB composites, as indicated by a single melting peak observed on these two second heating curves with no difference in melting point (Tm) between samples. Crystalline temperature (Tc) reached as high as 190.30 ℃, 13.66 ℃ higher than that of pure PA6, which was 176.64 ℃. Obvious improvement in crystallinity of PA6/CB composites came when carbon black content was set at 3.0%, which was 31.41% higher than that of the pure PA6 (Fig. 3 and Tab. 1). Degree of undercooling (ΔT) temperature reached as low as 28.78 ℃ in PA6/CB composites, which is about 15% less than pure PA6 when carbon black content is 2.5%. Weight loss of PA6/CB composites in the temperature range 100-600 ℃ were less than that of pure PA6, and all initial decomposition temperatures (temperatures when 5% weight had been lost) surpassed 390 ℃ (Fig. 4). In pure PA6, a characteristic diffraction peak around 21.5° indicated the presence of γ crystal formation. However, this peak disappeared upon the addition of carbon black. Instead, two characteristic diffraction peaks at around 20.1° and 23.3°-23.4° emerged, representing a more stable PA6 α crystal formation (Fig. 5). When using the same draw ratio in fiber spinning, the tensile strength reached its highest value at a carbon black content of 1.0%. However, as the loading content of carbon black increased, the tensile strength gradually declined, although it remained significantly higher than that of pure PA6. Notably, at a draw ratio of 3.2 and a carbon black content of 3.0%, the tensile strength increased by 20%. At the same time, the elongation at break decreased continuously(Tab. 3). Tensile strength and orientation factor went up with the increase of draw ratio in melt spinning procedure in the same carbon black content while elongation at break went down. The L value, representing blackness of PA/CB fibers, dropped from 91.57 in pure PA6 to as low as 17.13 with added carbon black. Higher linear density caused lower L value. Rubbing, washing and light color fastness of PA6/CB fibers all reached level 4-5 in fastness tests.

Conclusion Carbon black disperses well in the matrix and on the surface of PA6/CB fibers which promoted a more stable PA6 α crystal formation, and it improves thermal stability of PA6/CB composites. In addition, carbon black provides a reinforcing effect of PA6/CB fibers, and the tensile strength is higher than the pure PA6 ones. Moreover, the blackness of composite fibers is getting deeper with the increase of carbon black content while remaining excellent color fastness. As a result, highly uniform dispersion of carbon black particles in PA6 matrix can be achieved via in-situ polymerization, resulting in high blackness and good color fastness of composite fibers, while maintaining great mechanical properties. All these characteristics are well-suited for the production of fine denier fibers. In general, in comparison to traditional dyeing processes, in-situ polymerization method has significant advantages in energy saving, color fastness, color uniformity, and fabric resilience. It is a simple production process with low cost and high efficiency, making it suitable for large-scale production of single-color fibers. However, there are challenges such as high polymerization reaction temperature, high requirements for long-term heat resistance of colorants, and difficulties in equipment cleaning during production switching, which need to be addressed in the future.

Key words: in-situ polymerization, polyamide 6, carbon black, melt spinning, dope-dyed, polyamide 6/carbon black composite fiber

中图分类号: 

  • TQ342.11

图1

纯PA6和PA6/CB复合材料原料切片淬断面的SEM照片"

图2

纯PA6和PA6/CB复合纤维的SEM照片"

图3

不同炭黑质量分数的PA6/CB复合材料原料切片的DSC曲线"

表1

PA6和PA6/CB复合材料原料切片的DSC曲线相关参数"

样品
名称
Tm/
ΔHm/
(J·g-1)
Tc/
ΔHc/
(J·g-1)
Xc/
%
ΔT/
PA6 219.81 50.52 176.64 -60.99 26.59 43.17
PA6/1.0 219.13 50.55 189.39 -61.94 26.88 29.74
PA6/1.5 219.19 52.94 189.79 -65.32 28.29 29.40
PA6/2.0 218.50 55.73 189.47 -62.83 29.93 29.03
PA6/2.5 219.08 58.09 190.30 -65.73 31.36 28.78
PA6/3.0 219.09 57.89 189.68 -63.95 31.41 29.41

图4

纯PA6和不同炭黑质量分数的PA6/CB复合材料原料切片的TG曲线"

表2

纯PA6和不同炭黑质量分数的PA6/CB复合材料原料切片的TG参数"

样品名称 T5/ T10/ T50/
PA6 384.33 407.07 451.89
PA6/1.0 395.45 418.36 460.55
PA6/1.5 398.51 421.13 459.20
PA6/2.0 393.65 417.32 455.29
PA6/2.5 391.80 415.08 453.88
PA6/3.0 391.72 417.59 456.41

图5

纯PA6和不同炭黑质量分数的PA6/CB复合材料原料切片的X射线衍射谱图"

表3

纯PA6纤维和PA6/CB复合纤维的力学性能及声速取向因子"

样品
名称
牵伸
倍数
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
声速取
向因子
纯PA6 2.8 164.06 2.30 55.46 0.636
3.0 156.10 2.50 52.13
3.2 145.39 2.76 45.87
3.4 137.66 3.41 37.83
PA6/1.0 2.8 162.34 2.99 50.21 0.693
3.0 150.98 3.44 42.33
3.2 143.85 3.85 36.58
3.4 134.87 4.07 29.00
PA6/2.0 2.8 163.87 2.68 43.83 0.704
3.0 156.86 2.88 40.09
3.2 147.15 3.34 32.67
3.4 135.65 3.84 25.25
PA6/3.0 2.8 168.26 2.66 38.54 0.699
3.0 158.66 2.82 31.70 0.721
3.2 146.79 3.31 29.54 0.739
3.4 134.98 3.74 22.67 0.757

表4

纯PA6纤维和PA6/CB复合纤维的力学性能"

样品名称 牵伸
倍数
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
2.8 127.76 2.69 40.06
PA6-2 3.0 119.31 2.92 38.75
3.2 110.65 3.13 31.25
3.4 103.64 3.51 27.22
2.8 127.58 2.92 35.04
PA6-2/2.0 3.0 118.72 3.37 28.71
3.2 109.77 3.72 18.00
3.4 100.48 4.34 15.61
2.8 123.53 3.02 36.00
PA6-2/3.0 3.0 116.60 3.18 33.71
3.2 109.26 3.53 22.17
3.4 103.36 3.79 21.89

表5

纯PA6纤维和PA6/CB复合纤维的色度值"

样品名称 线密度/dtex L a b
纯PA6 164.06 91.57 -0.15 1.41
162.34 18.55 -0.06 -0.42
PA6/1.0 150.98 18.34 -0.09 -0.48
143.85 18.57 -0.06 -0.45
163.87 17.67 -0.16 -0.71
PA6/2.0 156.86 17.81 -0.16 -0.69
147.15 17.71 -0.13 -0.71
168.26 17.14 -0.12 -0.71
PA6/3.0 158.66 17.15 -0.15 -0.74
146.79 17.20 -0.13 -0.74
127.58 17.23 -0.13 -0.72
PA6-2/2.0 118.72 17.60 -0.18 -0.77
109.77 17.91 -0.21 -0.84
123.53 17.13 -0.14 -0.79
PA6-2/3.0 116.60 17.16 -0.15 -0.83
109.26 17.48 -0.13 -0.84

表6

PA6/CB复合纤维的色牢度"

耐摩擦色牢度 耐皂洗色牢度 耐光汗
色牢度
湿 变色 沾色
4~5 4~5 4~5 4~5 4~5
[1] 王彦伟. 锦纶6产业链生产现状及市场分析与展望[J]. 合成纤维工业, 2017, 40(5): 57-61.
WANG Yanwei. Production status,market analysis and outlook of nylon 6 industry chain[J]. China Synthetic Fiber Industry, 2017, 40(5): 57-61.
[2] 中国化学纤维工业协会. 2021年中国化纤行业运行分析与2022年展望[EB/OL]. [2022-04-19]. https://ccfa.com.cn/site/content/8571.html.
China Chemical Fibers Association. Operational analysis and outlook for China's chemical fiber industry in 2021 and 2022[EB/OL]. [2022-04-19]. https://ccfa.com.cn/site/content/8571.html.
[3] 孟庆. 低碳经济下纺织印染行业现状及发展趋势[J]. 全国流通经济, 2021(14): 62-64.
MENG Qing. Current situation and development tendency of textile printing and dyeing industry under low-carbon economy[J]. China Circulation Economy, 2021(14): 62-64.
[4] 王梦柯, 邱志成, 于春晓. 我国原液着色聚酰胺6纤维的研究进展[J]. 合成纤维工业, 2021, 44(3): 53-57.
WANG Mengke, QIU Zhicheng, YU Chunxiao. Research progress of dope-dyed polyamide 6 fiber in China[J]. China Synthetic Fiber Industry, 2021, 44(3): 53-57.
[5] 吴鹏飞, 朱金唐, 崔华帅, 等. 原液着色技术在纤维着色、发光应用研究中的进展[J]. 纺织科学研究, 2022(3): 56-60.
WU Pengfei, ZHU Jintang, CUI Huashuai, et al. Progress of dope-dyed technology in fiber coloring and luminescence[J]. Textile Science Research, 2022(3): 56-60.
[6] 万雷, 李德利, 吴文静, 等. 我国化纤母粒行业发展现状及趋势[J]. 纺织导报, 2019(1): 59-62.
WAN Lei, LI Deli, WU Wenjing, et al. Development status and trend of China's chemical fiber masterbatch industry[J]. China Textile Lader, 2019(1): 59-62.
[7] 邱志成, 李鑫, 李志勇, 等. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
QIU Chicheng, LI Xin, LI Zhiyong, et al. Structure and properties of polyester/carbon black system prepared by in-situ continuous polymerization[J]. Journal of Textile Research, 2021, 42(10): 15-21.
[8] 王梦柯. 成纤用聚酰胺6/碳纳米复合材料的原位合成及结构性能研究[D]. 上海: 东华大学, 2021: 5-9.
WANG Mengke. In situ synthesis and structural properties of polyamide 6/carbon nanocomposites for fiber formation[D]. Shanghai: Donghua University, 2021: 5-9.
[9] QI Luchen, LI Yandi, WENG Jiafeng, et al. The mechanical properties of polyethylene/graphene nanocomposites by in-situ synthesis[J]. Materials Research Express, 2019. DOI: 10.1088/2053-1591/ab102b.
[10] ARIMOTO H. α-γ transition of nylon 6[J]. Journal of Polymer Science Part A:General Papers, 1964, 2(5): 2283-2295.
doi: 10.1002/pol.10.v2:5
[11] ZHANG Xiaoshi, ANNE Gohn, GAMINI Mendis, et al. Probing three distinct crystal polymorphs of melt-crystallized polyamide 6 by an integrated fast scanning calorimetry chip system[J]. Macromolecules, 2021, 54(16): 7512-7528.
doi: 10.1021/acs.macromol.1c00811
[12] 李世杰, 赖登旺, 刘跃军, 等. Zr(HPO4)2/浇铸尼龙6复合材料的制备及结晶性能[J]. 高分子材料科学与工程, 2019, 35(5): 150-156.
LI Shijie, LAI Dengwang, LIU Yuejun, et al. Preparation and crystallization properties of Zr(HPO4)2/MCPA6 composites[J]. Polymeric Materials Science and Engineering, 2019, 35(5): 150-156.
[13] LI Yichao, HUANG Xiaorong, ZENG Lijian, et al. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites[J]. Journal of Materials Science, 2019, 54(2): 1036-1076.
doi: 10.1007/s10853-018-3006-9
[14] JIAN Han. Mechanical reinforcement in nylon 6 nanocomposite[J/OL]. Research Square, 2022. DOI: 10.21203/rs.3.rs-1551072/v1.
[15] LIU Haihui, HOU Lichen, PENG Weiwei, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. Journal of Materials Science, 2012, 47(23): 8052-8060.
doi: 10.1007/s10853-012-6695-5
[16] SONG Qingquan, WU Wenwen, WANG Yi, et al. The structure and properties of polyethylene oxide reinforced poly (metaphenylene isophthalamide) fibers[J]. Advanced Fiber Materials, 2021(4): 436-447.
[1] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[2] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[3] 赫爽, 孙莉娜, 胡红梅, 朱瑞淑, 俞建勇, 王学利. 全生物基聚呋喃二甲酸丙二醇酯及其纤维制备与性能[J]. 纺织学报, 2023, 44(05): 63-69.
[4] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123.
[5] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[6] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[7] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[8] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[9] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[10] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[11] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[12] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[13] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[14] 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
[15] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!