纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 113-119.doi: 10.13475/j.fzxb.20220808001

• 染整与化学品 • 上一篇    下一篇

基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能

贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光(), 李时伟   

  1. 武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
  • 收稿日期:2022-08-17 修回日期:2023-01-02 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 毕曙光(1978—),女,特聘教授,博士。主要研究方向为智能纤维与纺织品。E-mail:sgbi@wtu.edu.cn
  • 作者简介:贾丽萍(1997—),女,硕士。主要研究方向为智能纤维与纺织品。
  • 基金资助:
    国家自然科学基金项目(62101391);盛虹·应急保障与公共安全用纤维材料及其制品科研攻关项目(2021-fx010302);中国纺织工业联合会科技指导性计划项目(2022043)

Strain-sensing and electrothermal difunctional core-spun yarn based on long silver nanowires

JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang(), LI Shiwei   

  1. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-08-17 Revised:2023-01-02 Published:2023-10-15 Online:2023-12-07

摘要:

针对柔性应变传感器目前存在的灵敏度低、应变范围窄、反复拉伸后性能不稳定、功能单一等问题,采用预拉伸浸渍法以商用弹性包芯纱为柔性基体、水性聚氨酯(WPU)为分散剂和黏合剂、长银纳米线(AgNWs)为导电材料制备了具有应变传感与电热双功能的包芯纱。借助X射线衍射仪、扫描电子显微镜、数字万用表、万能试验机、菲力尔热像仪对AgNWs的晶体结构及双功能包芯纱的形貌结构、电学性能、力学性能、电热性能进行表征和分析。结果表明:当弹性包芯纱的预拉伸应变量为30%且AgNWs的负载量为15%时,制备的双功能包芯纱的鞘层棉纤维上形成了致密的AgNWs导电网络;在宽应变范围(0%~70%)内呈现明显的应变传感性能,灵敏度最高可达12.8,反复拉伸后的应变传感和力学性能稳定;在手指的运动监测中,手指发生小幅度和大幅度的弯曲变化,双功能包芯纱均能做出相应的电信号响应,体现了高灵敏度;5 V电压下,静态拉伸范围为0%~50%时,双功能包芯纱的温度变化范围为49.8~65.7 ℃,体现了优异的电热性能。

关键词: 包芯纱, 预拉伸, 银纳米线, 应变传感, 电热性能, 智能可穿戴

Abstract:

Objective Strain sensing is one of the important functions of a smart fabric, which can transform the external stress (or strain) into visible electrical signals and monitor the physiological and motion characteristics of human body. At present, the flexible strain sensor has some problems, such as low sensitivity, small strain range and unstable performance after multiple stretching.

Method AgNO3 was used as silver source material, NaCl and NaBr as nucleating agent, polyvinylpyrrolidone as ending agent, ethylene glycol as solvent and reducing agent in the reaction to prepare long silver nanowires. The commercial elastic core-spun yarn with single spandex fiber as inner layer, polyester fiber as sheath as flexible matrix, water-borne polyurethane (WPU) as dispersing agent and binder, and long silver nanowires (AgNWs) as conductive material was prepared by pre-stretch impregnation method with dual functions of strain sensing and electric heating.

Results AgNWs prepared by polyol method have uniform morphology, uniform dispersion, length up to 155 μm, diameter only 146 nm, and aspect ratio up to 1 000 (Fig. 1(b)). When the mass ratio of AgNWs/WPU is 2∶1 and the core-spun yarn is pre-stretched by 30%, AgNWs can adhere to a single cotton fiber to form a stable and dense AgNWs conductive network(Fig. 2). When the load of AgNWs was 15%, the percolation threshold is reached, and the conductivity value became 466 S/m(Fig. 3(a)). During stretching, the conductive network formed by AgNWs was deformed together with the inner spandex fiber, and the core-spun yarn exhibited a Gauge factor value of 12.7 at the highest within a wide strain range of 0%-70%. When the core-spun yarn was drawn, the stress gradually increases with the deformation. When the tensile length reached 25 mm, i.e., the elongation of 250%, the polyester fiber began to break. The cyclic tensile mechanical properties of core-spun yarns under 10% strain were further tested (Fig. 5(b)). The deformation of core-spun yarns could be quickly recovered after repeated stretching for at least 10 times, showing good mechanical stability. At 5 V voltage, when the static tensile range was increased from 0% to 50%, the conductive network structure formed by AgNWs is destroyed, resulting in a continuous decrease in its electrical conductivity. The maximum temperature range is 49.8-65.7 ℃, which reflects excellent electrothermal performance.

Conclusion In this paper, a strain sensing electrothermal core-spun yarn with elastic core-spun yarn as flexible substrate, WPU as dispersing agent and binder, and AgNWs as conductive material was prepared by the method of multiple impregnation of 30% of pre-drawn elastic core-spun yarn. The results show that when AgNWs/WPU (mass ratio of 2∶1) mixed emulsion is prepared, AgNWs can be uniformly dispersed and AgNWs/WPU film is formed only on the surface of a single cotton fiber. The cotton fiber is completely dispersed by using the 30% impregnation method of pre-drawn core-spun yarn. Dense AgNWs conductive network is formed on the single cotton fiber of the yarn sheath layer, and the electrical conductivity reaches the extreme value. When the load of AgNWs is 15%, the strain range of AgNWs core-spun yarn is wide (0%-70%), and the sensitivity is up to 12.8. After repeated stretching, the strain sensing and mechanical properties of AgNWs yarn are stable. At 5 V voltage, when the static tensile range is 0%-50%, the maximum temperature variation range is 49.8-65.7 ℃, which reflects the excellent electric heating performance. The AgNWs strain sensing electrothermal cored yarn made by pre-stretch impregnation is expected to be an ideal method for large-scale production of wearable smart devices.

Key words: core-spun yarn, pre-stretch, long silver nanowire, strain sensing, electrothermal property, smart wearable

中图分类号: 

  • TS195.5

图1

AgNWs的XRD曲线和SEM照片"

图2

预拉伸浸渍法制备的AgNWs包芯纱结构表征"

图3

AgNWs包芯纱的应变传感性能"

图4

手指不同弯曲幅度和不同弯曲速率时的电阻变化曲线"

图5

AgNWs包芯纱的拉伸力学性能和循环稳定性能"

图6

不同应变下的 AgNWs包芯纱的电热性能"

图7

AgNWs包芯纱的耐摩擦及耐水洗性能"

[1] SEYEDIN S, ZHANG P, NAEBE M, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-49.
doi: 10.1039/C8MH01062E
[2] YAO S, MYERS A, MALHOTRA A, et al. A wearable hydration sensor with conformal nanowire elec-trodes[J]. Advanced Healthcare Materials, 2017, 6(6): 27695.
[3] LA T G, QIU S, SCOTT D K, et al. Two-layered and stretchable e-textile patches for wearable healthcare electronics[J]. Advanced Healthcare Materials, 2018. DOI: 10.1002/adhm.201801033.
[4] WANG L, FU X, HE J, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1-25.
[5] CHEN L Y, TEE B C, CHORTOS A L, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6028.
[6] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monito-ring[J]. Nature Communications, 2014. DOI: 10.1038/ncomms5496.
[7] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342.
doi: 10.1002/adma.v26.9
[8] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
doi: 10.1039/C4MH00147H
[9] ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Appl Mater Interfaces, 2019, 11(26): 23649-23658.
doi: 10.1021/acsami.9b08611
[10] CAI G, HAO B, LUO L, et al. Highly stretchable sheath-core yarns for multifunctional wearable elec-tronics[J]. ACS Appl Mater Interfaces, 2020, 12(26): 29717-29727.
[11] CAI G, YANG M, PAN J, et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32726-32735.
doi: 10.1021/acsami.8b11885
[12] YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
doi: 10.1002/adma.v25.46
[13] GURARSLAN A, ÖZDEMIR B, BAYAT İ H, et al. Silver nanowire coated knitted wool fabrics for wearable electronic applications[J]. Journal of Engineered Fibers and Fabrics, 2019. DOI: 10.1177/1558925019856222.
[14] WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon, 2017, 113: 395-403.
doi: 10.1016/j.carbon.2016.11.027
[15] CHEN S, WEI Y, YUAN X, et al. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich struc-ture[J]. Journal of Materials Chemistry C, 2016, 4(19): 4304-4311.
doi: 10.1039/C6TC00300A
[16] HA H, AMICUCCI C, MATTEINI P, et al. Mini review of synthesis strategies of silver nanowires and their applications[J]. Colloid and Interface Science Communications, 2022. DOI: 10.1016/j.colcom.2022.100663.
[17] FU D, YANG R, WANG Y, et al. Silver nanowire synthesis and applications in composites: progress and prospects[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202200027.
[1] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[2] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[3] 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71.
[4] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
[5] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[6] 付驰宇, 徐傲, 齐硕, 王凯, 缪莹, 尚路路, 夏治刚. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(06): 91-97.
[7] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[8] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[9] 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105.
[10] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[11] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[12] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[13] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[14] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[15] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!