纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 127-133.doi: 10.13475/j.fzxb.20220808201
LIU Guangju1, SU Yun1,2(), TIAN Miao1,2, LI Jun1,2
摘要:
为研究电加热元件的调温机制及其对足部热舒适的影响,基于有限体积法建立了电加热鞋帮二维传热模型,考虑了多孔介质织物传热以及加热区与非加热区的二维传热特性。通过冷暴露环境下电加热鞋帮织物的调温性能测试,验证了电加热鞋帮二维传热模型,并与一维模型进行了对比分析。结果表明:二维模型对于皮肤温度的预测偏差控制在2.59%~13.74%之间,随着鞋帮织物保暖性的改善,能够更准确地预测皮肤温度的变化;相比一维模型,二维模型能够更加科学地模拟电加热元件的调温规律,加热片温度在初始升温阶段的预测偏差减小了2.99%~25.09%。电加热鞋帮二维传热模型可更加准确地表征其调温机制,对丰富电加热元件二维传热理论、指导电加热元件的参数化设计具有重要意义。
中图分类号:
[1] |
KUKLANE K. Protection of feet in cold exposure[J]. Industrial Health, 2009, 47(3): 242-253.
pmid: 19531910 |
[2] | CHEN Z, LI J, SONG W, et al. Smart wireless charging heating insoles: improving body thermal comfort of young males in an extremely cold environment[J]. Clothing and Textiles Research Journal, 2020(3): 1-15. |
[3] | DENG Y, CAO B, LIU B, et al. Effects of local heating on thermal comfort of standing people in extremely cold environments[J]. Building and Environment, 2020. DOI: 10.1016/j.buildenv.2020.107256. |
[4] |
KUKLANE K, AFANASIEVA R, BURMISTROVA O, et al. Determination of heat loss from the feet and insulation of the footwear[J]. International Journal of Occupational Safety and Ergonomics, 1999, 5(4): 465-476.
pmid: 10657921 |
[5] |
PUSZKARZ A K, USUPOV A. The study of footwear thermal insulation using thermography and the finite volume method[J]. International Journal of Thermophysics, 2019, 40(4): 45.
doi: 10.1007/s10765-019-2509-1 |
[6] | COVILL D, GUAN Z W, BAILEY M, et al. Development of thermal models of footwear using finite element analysis[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2011, 225(3): 268-281. |
[7] | SHIMAZAKI Y, AISAKA K. Novel thermal analysis model of the foot-shoe sole interface during gait motion[J]. Proceedings, 2018.DOI: 10.3390/proceedings2060278. |
[8] | NEMATI H, MOGHIMI M A, NAEMI R. A mathematical model to investigate heat transfer in footwear during jogging[J]. Journal of Thermal Biology, 2021.DOI: 10.1016/j.jtherbio.2020.102778. |
[9] | LIU G, SU Y, ZHU W, et al. Numerical simulation of heat transfer in electrically heated footwear in a severely cold environment[J]. Building and Environment, 2022.DOI: 10.1016/j.buildenv.2021.108429. |
[10] | LI X, KUAI B, TU X, et al. Three-dimensional analysis model of electric heating fabrics considering the skin metabolism[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 1-12. |
[11] |
LEHMUSKALLIO E, HASSI J, KETTUNEN P. The skin in the cold[J]. International Journal of Circumpolar Health, 2002, 61(3): 277-286.
pmid: 12369118 |
[12] | JOR A, HASHAR M R, AREFIN M S. Study of thermal distribution and comfort in shoe through cfd tech-nique[J]. Global Journal of Science Frontier Research: A Physics and Space Science, 2018, 18(7): 37-43. |
[13] | FU M, WENG W, YUAN H. Numerical simulation of the effects of blood perfusion, water diffusion, and vaporization on the skin temperature and burn injuries[J]. Numerical Heat Transfer, Part A: Applica-tions, 2014, 65(12): 1187-1203. |
[14] | GHAZY A, BERGSTROM D J. Numerical simulation of heat transfer in firefighters' protective clothing with multiple air gaps during flash fire exposure[J]. Numerical Heat Transfer, 2012, 61(8): 569-593. |
[15] | 任萍, 杨阳, 刘静. 人体足部传热数值模拟及加热实验[J]. 纺织学报, 2009, 30(3): 99-105. |
REN Ping, YANG Yang, LIU Jing. Numerical simulation of heat transfer of human foot and heating experiments[J]. Journal of Textile Research, 2009, 30(3): 99-105. | |
[16] | 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 1988: 23-30. |
TAO Wenquan. Numerical heat transfer[M]. Xi'an: Xi'an Jiaotong University Press, 1988: 23-30. | |
[17] | AMES W F. Numerical methods for partial differential equations[M]. New York: Academic Press, 1977: 116-117, 144-151. |
[18] | 王革辉. 服装材料学[M]. 北京: 中国纺织出版社, 2010: 7-14. |
WANG Gehui. Fabric for fashion design[M]. Beijing: China Textile & Apparel Press, 2010: 7-14. | |
[19] | WEI Y, SU Y, LI J, et al. A test device to characterize cold-contact protective performance of fabrics[J]. Journal of Industrial Textiles, 2021.DOI: 10.1177/15280837211011777. |
[1] | 聂思萱, 尹虎, 聂亚东. 半导体制冷服设计方法研究进展[J]. 纺织学报, 2023, 44(10): 223-231. |
[2] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
[3] | 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194. |
[4] | 郑晴, 严芳英, 柯莹, 王鸿博. 基于睡袋温标模型的被子舒适温度测定与可行性验证[J]. 纺织学报, 2023, 44(02): 151-158. |
[5] | 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208. |
[6] | 江舒, 李俊. 婴儿被服热舒适性研究进展[J]. 纺织学报, 2022, 43(08): 189-196. |
[7] | 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145. |
[8] | 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155. |
[9] | 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202. |
[10] | 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155. |
[11] | 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(01): 190-196. |
[12] | 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188. |
[13] | 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115. |
[14] | 陈扬 杨允出 张艺强 范艳娟 金艳苹. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(05): 49-55. |
[15] | 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97. |
|