纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 16-23.doi: 10.13475/j.fzxb.20220503901

• 纤维材料 • 上一篇    下一篇

聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备

张成成1, 刘让同1,2(), 李淑静1,2, 李亮1,2, 刘淑萍1,2   

  1. 1.中原工学院, 河南 郑州 451191
    2.先进纺织装备技术省部共建协同创新中心, 河南 郑州 451191
  • 收稿日期:2022-05-12 修回日期:2023-06-28 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 刘让同(1966—),男,教授,博士。主要研究方向为纺织服装新材料。E-mail:ranton@126.com
  • 作者简介:张成成(1993—),男,硕士生。主要研究方向为纺织服装新材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Pore-forming mechanism via non-solvent volatilization induced phase separation and porous nanofiber preparation based on poly-l-lactic acid

ZHANG Chengcheng1, LIU Rangtong1,2(), LI Shujing1,2, LI Liang1,2, LIU Shuping1,2   

  1. 1. Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Collaborative Innovation Center of Advanced Textile Equipment, Zhengzhou, Henan 451191, China
  • Received:2022-05-12 Revised:2023-06-28 Published:2023-10-15 Online:2023-12-07

摘要:

为实现聚左旋乳酸纳米纤维孔隙结构可控,以氯仿和丙酮为混合溶剂,通过在聚左旋乳酸中加入柴胡,采用静电纺丝技术制备纳米多孔纤维膜。探索了非溶剂挥发诱导相分离成孔机制,研究了柴胡质量分数、溶剂配比、聚左旋乳酸质量分数对纤维膜孔隙结构的影响。结果表明:在非溶剂溶液体系中添加柴胡能够提升纤维膜的孔隙率,随着柴胡质量分数的增加,纳米多孔纤维膜的孔隙率逐渐增加,当柴胡质量分数为2%时孔隙率最大,为70.98%;改变氯仿与丙酮配比会对纤维膜孔隙结构造成影响,当氯仿和丙酮质量比为8∶1时,纤维膜的孔隙率达到最大,为82.09%;聚左旋乳酸质量分数为9%时纤维膜的孔隙率达到最大。

关键词: 聚左旋乳酸, 纳米纤维膜, 静电纺丝, 柴胡, 多孔纤维, 非溶剂溶液体系, 成孔机制

Abstract:

Objective Poly L-lactic acid (PLLA) nanofiber membrane with porous fibers has excellent adsorption and filtration properties, and it is widely used in biomedicine, flexible sensors, filtration materials and other related fields. However, the preparation of the PLLA nanofibers with controllable pore structure and high porosity is still a challenge.

Method With PLLA as raw material, chloroform and acetone as solvents, and bupleurum as additives, the multipored PLLA nanofibers were successfully prepared by phase separation method based on electrospinning technology. The microstructure, molecular structure and porosity of the PLLA nanofibers were characterized by thermal field scanning electron microscopy, fourier transform infrared and automatic surface and porosity analyzer.

Results The surface of virgin PLLA fiber was relatively flat, with no obvious pores. When the mass fraction of bupleurum was set to 1%, 2%, and 3%, a large number of pore structures appear on the fiber surface in PLLA fiber membrane, indicating that the addition of bupleurum additive greatly improves the fiber porosity (Fig. 2). When the mass fraction of radix bupleurum was at 2%, the porous structure in the fiber became more obvious, and the porosity is 70.98%. Bupleurum did not participate in the change of the chemical bond of PLLA in the blending electrospinning process, and the structure of PLLA macromolecule did not change significantly, which did not affect the functional groups. The additional functional groups of bupleurum were not introduced into the PLLA fiber membrane, but affected the speed of phase separation, which was conducive to the formation of pore structure. Under the condition of keeping the mass fraction of bupleurum mass fraction at 2%, the pore structure of fiber membrane prepared with different solvent mass ratios was obvious(Fig. 5). As the chloroform/acetone mass ratio was changed from 5∶1, 6∶1, 7∶1 to 8∶1, the fiber porosity membrane gradually increases(Tab. 1). When the chloroform/acetone mass ratio was altered from 8∶1, 9∶1 to 10∶1, the fiber membrane porosity gradually decreases. This indicated that the solvent mass ratio is an important factor affecting the fiber porosity, and when the solvent mass ratio is 8∶1, the fiber membrane porosity reaches the maximum (82.09%). The porosity of fiber membrane was increased from 6% to 9%, it is due to the increase in concentration of the mixed solution, which increases the viscosity of the solution, causing the originally collapsed pores on the nanofibers to grow into normal pores during the spinning process(Tab. 2). The concentration of PLLA in the spinning solution was found an important factor affecting the fiber pore structure, because the main structure of the fiber is composed of PLLA, and the change of the concentration of PLLA will directly affect on the degree of entanglement of the polymer molecular chain, determining the viscosity of the solution and ultimately whether the spinning can proceed normally.

Conclusion It is confirmed that adding bupleurum to NSS system can improve the porosity of fiber membrane. When the mass fraction of bupleurum is set at 2%, the mass ratio of chloroform to acetone is 8∶1, and the concentration of PLLA is 9%, the porosity of the fiber reaches the maximum value of 82.09%. When the porosity of the fiber membrane greatly increases, PLLA nanofiber membrane can be used in fields such as oily wastewater treatment and medical masks.

Key words: poly-l-lactic acid, nanofiber membrane, electrospinning, bupleurum, porous fiber, non-solvent solution system, pore-forming mechanism

中图分类号: 

  • TQ340.64

图1

非溶剂挥发诱导相分离成孔机制"

图2

添加不同质量分数柴胡的PLLA纳米多孔纤维膜的SEM照片"

图3

添加不同质量分数柴胡的PLLA纳米纤维膜的纤维直径分布图"

图4

添加不同质量分数柴胡的PLLA纳米纤维膜的红外光谱图"

图5

不同氯仿与丙酮质量比的PLLA纳米纤维膜的SEM照片"

表1

不同氯仿与丙酮质量比的PLLA纳米纤维膜的孔隙率"

氯仿与丙酮质量比 纤维膜孔隙率/%
5∶1 71.23
6∶1 75.32
7∶1 79.01
8∶1 82.09
9∶1 75.62
10∶1 71.36

图6

不同PLLA质量分数的纳米纤维膜的SEM照片"

图7

不同PLLA质量分数的纳米纤维膜的纤维直径分布图"

表2

不同PLLA质量分数的纳米纤维膜的孔隙率"

PLLA质量分数 孔隙率
6 57.72
7 68.65
8 77.86
9 82.09
10 75.96
[1] FORMHALS A. Process and apparatus for preparing artificial threads:US 1975504[P]. 1934-10-02.
[2] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35(2/3): 151-160.
doi: 10.1016/0304-3886(95)00041-8
[3] 刘强飞, 黎璠, 杨吉震, 等. 多孔聚乳酸纳米纤维膜的吸油性能研究[J]. 棉纺织技术, 2021, 49 (10): 25-28.
LIU Qiangfei, LI Fan, YANG Jizhen, et al. Study on oil absorption performance of porous polylactic acid nanofiber membrane[J]. Cotton Textile Technology, 2021, 49 (10): 25-28.
[4] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured fibers via electrospinning[J]. Advanced Materials, 2001, 13(1) : 70-72.
doi: 10.1002/(ISSN)1521-4095
[5] 曹胜光, 胡炳环, 刘海清. 静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维[J]. 高分子学报, 2010(10): 1193-1198.
CAO Shengguang, HU Binghuan, LIU Haiqing. Preparation of nano porous polylactic acid (PLLA) ultrafine fibers by electrospinning[J]. Acta Polymerica Sinica, 2010(10): 1193-1198.
[6] MCCANN Jesse T, MARQUEZ Manuel, XIA Younan. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano letters, 2006, 6(12): 2868-2872.
pmid: 17163721
[7] ZHANG Lifeng, HSIEH You-Lo. Nanoporous ultrahigh specific surface polyacrylonitrile fibres[J]. Nanotechnology, 2006, 17(17) : 4416-4423.
doi: 10.1088/0957-4484/17/17/022
[8] 郭珍, 葛波, 韩美丽, 等. 根肿菌侵染油菜抗感病品早期防御酶活性及转录组分析[J]. 植物保护学报, 2018, 45(2): 290-298.
GUO Zhen, GE Bo, HAN Meili, et al. Early defenseenzyme activity and transcriptome analysis of resistant and susceptible rape varieties infected by Rhizopus[J]. Journal of Plant Protection, 2018, 45(2): 290-298.
[9] 杨旸, 刘健, 甘礼惠, 等. 木聚糖酶原位协同水解预处理大米草的研究[J]. 应用化工, 2020, 49(1): 74-77,84.
YANG Yang, LIU Jian, GAN Lihui, et al. Study on pretreatment of rice grass by in situ synergistic hydrolysis of xylanase[J]. Applied Chemical Industry, 2020, 49(1): 74-77, 84.
[10] 郭亮亮, 靳宁宁, 王莹, 等. N-烷基化壳聚糖/白芨多糖复合材料制备[J]. 应用化工, 2020, 49(3): 632-637.
GUO Liangliang, JIN Ningning, WANG Ying, et al. Preparation of N-alkylated chitosan/Bletilla striata polysaccharide composite[J]. Applied Chemical Industry, 2020, 49 (3): 632-637.
[11] 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(9): 102-107.
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading and antistatic properties of polyester fabric[J]. Journal of Textile Research, 2020, 41 (9): 102-107.
[12] JULIANA Lasprilla-botero, MONICA Álvarez-lainez, LAGARON J M. The influence of electro-spinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers[J]. Materials Today Communications, 2018, 14(3): 1-9.
doi: 10.1016/j.mtcomm.2017.12.003
[13] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35 (11): 6-12.
WANG Zhe, PAN Zhijuan. Pore structure and air filtration performance of electrospun polylactic acid fiber[J]. Journal of Textile Research, 2014, 35 (11): 6-12.
[1] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[2] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[3] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[4] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[5] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[6] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[7] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[8] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[9] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[10] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[11] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[12] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[13] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[14] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[15] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!