纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 196-204.doi: 10.13475/j.fzxb.20220502802

• 综合述评 • 上一篇    下一篇

胶体静电纺微纳米纤维的研究进展

付征1, 穆齐锋1, 张青松1,2(), 张宇晨3, 李玉莹3, 蔡仲雨4   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.烟台南山学院 纺织与服装学院, 山东 烟台 265713
    3.天津工业大学 纺织科学与工程学院, 天津 300387
    4.北京航空航天大学 前沿科学技术创新研究院, 北京 100191
  • 收稿日期:2022-05-10 修回日期:2022-12-16 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 张青松(1980—),男,教授,博士。主要研究方向为丝胶蛋白基多重响应性水凝胶、多功能凝胶纤维和结构色静电纺纤维。E-mail:zqs8011@163.com
  • 作者简介:付征(1997—),男,硕士。主要研究方向为胶体静电纺结构色纤维。
  • 基金资助:
    国家自然科学基金项目(22076008);中国纺织工业联合会科技指导性项目(2018034);山东省自然科学基金项目(ZR2022ME095);天津工业大学纤维研究基金项目(TGF-21-B5);天津工业大学医工结合科研计划课题(2021YGJHLX03);烟台南山学院青年科研启动基金项目(2021QKJ14)

Research progress in colloidal electrospun micro/nano fibers

FU Zheng1, MU Qifeng1, ZHANG Qingsong1,2(), ZHANG Yuchen3, LI Yuying3, CAI Zhongyu4   

  1. 1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Textile and Clothing, Yantai Nanshan University, Yantai, Shandong 265713, China
    3. College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    4. Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • Received:2022-05-10 Revised:2022-12-16 Published:2023-10-15 Online:2023-12-07

摘要:

为实现胶体静电纺纤维的形貌调控和广泛应用,综述了胶体静电纺丝的概念、制备原理、形貌影响因素、后处理方法及其应用,并对胶体静电纺丝的未来发展进行展望。发现调节纺丝液的配比和静电纺丝参数可获得不同形貌(串珠状、纺锤体状、黑莓状等)的复合纤维膜,对复合纤维膜进行不同的后处理(煅烧、浸泡、负载、交联)可赋予纤维新的功能,其处理后可应用于超疏水、吸附、催化、传感、组织工程、光子晶体纤维等领域。未来可通过多元胶体静电纺丝或提高颗粒间的相互作用,制备具有高韧性、优异力学性能和特定功能的复合纤维膜,并与3D打印相结合进一步拓展其应用范围和研究领域。

关键词: 胶体静电纺丝, 胶体颗粒, 微纳米纤维, 形貌调控, 模板聚合物

Abstract:

Significance Colloidal electrospinning is a new micro-nano preparation technology based on electrospinning. The colloidal particles are mixed with the template polymer solution and electrospun, and the colloidal particles are embedded in the nanofibers. On the one hand, the template polymer improves the spinnability of colloidal particles and provides a flexible carrier for colloidal particles and on the other hand the embedding of functional colloidal particles brings new functions to the fiber. In order to further understand the morphology control for wide applications of colloidal electrospinning fibers, this paper reviews the concept, working principle, morphology shape influencing factors, spinning treatment and application of colloidal electrospinning, and the future development of colloidal electrospinning prospect.

Progress As a branch of electrospinning, colloidal electrospinning makes it possible that composite micro/nano fiber membranes with special structure and properties can be obtained by electrospinning after mixing colloidal particles with template polymer. Colloidal particles can be divided into three categories, i.e. inorganic colloidal particles such as silicon dioxide (SiO2), polymer colloidal particles such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and temperature-sensitive microgel particles such as poly(N-isopropylacrylamide) (PNIPAm), Poly(N-vinylcaprolactam) (PVCL). Template polymers can improve the spinnability of colloidal particles and provide flexible carriers for colloidal particles among which poly(vinyl alcohol) (PVA) is the most commonly used template. The morphology of colloidal electrospun fiber mainly depends on the ratio of colloidal particles to template polymer, colloidal particle size, surfactant, viscosity of spinning solution and spinning voltage, and so on. It has been reported that there are beaded structure, bracelet structure, one-dimensional colloidal assembly, necklace structure, colloidal rod structure, spindle-like structure, colloidal fiber structure, and black berry-like structure. The range of application can be further broadened by different treatments before and after colloidal electrospinning. On the one hand, colloidal particles can be used as a nano-container to load drugs or metal oxide particles, and on the other hand, the composite fibers can be calcined, soaked and cross-linked, which can give the fibers new functions. The fiber membranes with different treatments can be used in the fields of super hydrophobicity, adsorption, catalysis, sensing, tissue engineering, photonic crystal fiber and so on.

Conclusion and Prospect At present, composite micro/nano fiber membranes with various morphologies and functions can be prepared by colloidal electrospinning and further treatment, but the research on colloidal electrospinning is still in its infancy. The preparation of composite fiber membranes with flexibility, good mechanical properties and specific function by colloid electrospinning demands further research. In order to better develop of colloidal electrospun fiber, the future research can be carried out from the following four aspects. ①At present, colloidal electrospinning is mainly univariate colloidal electrospinning. In the future, multicomponent colloid electrospinning technology should be developed to integrate multiple functions on the fiber membrane, or to realize the controlled release of many drugs on the fiber membrane. ②After the template polymer in the composite fiber membrane is removed by calcination or immersion, the fiber membrane has higher brittleness and poor mechanical properties, which limits the further application of the fiber membrane. In the future, the mechanical properties can be enhanced by improving the interaction between colloidal particles, such as physical or chemical interaction. ③Active substances such as enzymes, cells and viruses can be loaded into the fiber by electrospinning to develop bioactive fiber membranes for tissue engineering. ④Colloidal electrospinning can be combined with 3D printing to construct composite fiber membranes with three-dimensional structure.

Key words: colloidal electrospinning, colloidal particle, micro/nano fiber, morphology control, template polymer

中图分类号: 

  • TS171

图1

胶体静电纺丝示意图"

图2

胶体静电纺纤维的形貌"

图3

不同密度下胶体纤维形貌及其横切面"

[1] MIGUEL SÓnia P, FIGUEIRA Daniela R, SIMÕES Déborah, et al. Electrospun polymeric nanofibres as wound dressings: a review[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 60-71.
doi: 10.1016/j.colsurfb.2018.05.011
[2] LIU Yang, MA Hongyang, HSIAO Benjamin S, et al. Improvement of meltdown temperature of lithium-ion battery separator using electrospun polyethersulfone membranes[J]. Polymer, 2016, 107: 163-169.
doi: 10.1016/j.polymer.2016.11.020
[3] ZHAO Luying, DUAN Gaigai, ZHANG Guoying, et al. Electrospun functional materials toward food packaging applications: a review[J]. Nanomaterials, 2020. DOI: 10.3390/nano10010150.
[4] CHENG Huiling, YANG Xiaoye, CHE Xin, et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Materials Science and Engineering: C, 2018, 90: 750-763.
doi: 10.1016/j.msec.2018.05.007
[5] KHALILY Mohammad Aref, YURDERI Mehmet, HAIDER Ali, et al. Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26162-26169.
[6] LI Xiaoqiang, CHEN Shi, HUA Qiu, et al. Fabrication of fluorescent poly (L-lactide-co-caprolactone) fibers with quantum-dot incorporation from emulsion electrospinning for chloramphenicol detection[J]. Journal of Applied Polymer Science, 2017, 134(11): 1-7.
[7] FUENMAYOR Carlos Alberto, LEMMA Solomon Mengistu, MANNINO Saverio, et al. Filtration of apple juice by nylon nanofibrous membranes[J]. Journal of Food Engineering, 2014, 122: 110-116.
doi: 10.1016/j.jfoodeng.2013.08.038
[8] CRESPY Daniel, FRIEDEMANN Kathrin, POPA Ana-Maria. Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions[J]. Macromolecular Rapid Communications, 2012, 33(23): 1978-1995.
doi: 10.1002/marc.201200549 pmid: 23129202
[9] AGARWAL Seema, GREINER Andreas. On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3): 372-378.
doi: 10.1002/pat.v22.3
[10] JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Nanocontainers in and onto nanofibers[J]. Accounts of Chemical Research, 2016, 49(5): 816-823.
doi: 10.1021/acs.accounts.5b00524 pmid: 27135135
[11] ZHANG Chuanling, YU Shuhong. Nanoparticles meet electrospinning: recent advances and future pros-pects[J]. Chemical Society Reviews, 2014, 43(13): 4423-4448.
doi: 10.1039/c3cs60426h pmid: 24695773
[12] LIM Jong-Min, MOON Jun Hyuk, YI Gi-Ra, et al. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers[J]. Langmuir, 2006, 22(8): 3445-3449.
doi: 10.1021/la053057d pmid: 16584206
[13] STOILJKOVIC Aleksandar, ISHAQUE Michael, JUSTUS Uwe, et al. Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning[J]. Polymer, 2007, 48(14): 3974-3981.
doi: 10.1016/j.polymer.2007.04.050
[14] WU Chaojie, YUAN Wei, AL-DEYAB Salem S, et al. Tuning porous silica nanofibers by colloid electrospinning for dye adsorption[J]. Applied Surface Science, 2014, 313: 389-395.
doi: 10.1016/j.apsusc.2014.06.002
[15] WANG Min, LI Xiong, HUA Weikang, et al. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence perfor-mance[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23995-24007.
[16] XIA Yan, ZHAO Hongran, LIU Sen, et al. The humidity-sensitive property of MCM-48 self-assembly fiber prepared via electrospinning[J]. RSC Advances, 2014, 4(6): 2807-2812.
doi: 10.1039/C3RA45339A
[17] MERCATO Loretta Laureana Del, MOFFA Maria, RINALDI Rosaria, et al. Ratiometric organic fibers for localized and reversible ion sensing with micrometer-scale spatial resolution[J]. Small, 2015, 11(48): 6417-6424.
doi: 10.1002/smll.201502171 pmid: 26539625
[18] SAN Luis Alicia De, AGUIRREURRETA Ziortza, PARDO Leticia M, et al. PS/PMMA-CdSe/ZnS quantum dots hybrid nanofibers for VOCs sensors[J]. Israel Journal of Chemistry, 2018, 58(12): 1347-1355.
doi: 10.1002/ijch.v58.12
[19] HORZUM Nesrin, MUNOZ-ESPI Rafael, GLASSER Gunnar, et al. Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6338-6345.
[20] MIGENDA Julia, WERNER Sebastian, ELLINGHAUS Rüdiger, et al. Mesoporous poly(divinylbenzene) fibers based on crosslinked nanoparticles[J]. Macromolecular Chemistry and Physics, 2018, 219(5): 1-13.
[21] LIM Jongmin, YI Gira, MOON Junhyuk, et al. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology[J]. Langmuir, 2007, 23(15): 7981-7989.
pmid: 17569546
[22] LI Xiong, YU Xufeng, CHENG Cheng, et al. Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21919-21930.
[23] JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Dual-responsive multicompartment nanofibers for controlled release of payloads[J]. RSC Advances, 2016, 6(49): 43767-43770.
doi: 10.1039/C6RA05687C
[24] JIANG Shuai, LV Liping, LI Qifeng, et al. Tailoring nanoarchitectonics to control the release profile of payloads[J]. Nanoscale, 2016, 8(22): 11511-11517.
doi: 10.1039/c6nr00917d pmid: 27198762
[25] KIM Sohee, PARK Sunggurl, KANG Sunwoong, et al. Nanofiber-based hydrocolloid from colloid electrospinning toward next generation wound dressing[J]. Macromolecular Materials and Engineering, 2016, 301(7): 818-826.
doi: 10.1002/mame.v301.7
[26] WU Yingke, LIN Weiwei, HAO Hongye, et al. Nanofibrous scaffold from electrospinning biodegradable waterborne polyurethane/poly(vinyl alcohol) for tissue engineering application[J]. Journal of Biomaterials Science-Polymer Edition, 2017, 28(7): 648-663.
doi: 10.1080/09205063.2017.1294041
[27] YUAN Wei, ZHOU Ning, SHI Lei, et al. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071.
[28] KIM Geon Hwee, AN Taechang, LIM Geunbae. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters, 2018, 13(204): 1-6.
doi: 10.1186/s11671-017-2411-3
[29] YUAN Shujian, MENG Weihao, DU Aihua, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science, 2019, 37(8): 729-736.
doi: 10.1007/s10118-019-2286-0
[30] JIN Yu, YANG Dayong, KANG Dongyang, et al. Fabrication of necklace-like structures via electrospinning[J]. Langmuir, 2010, 26(2): 1186-1190.
doi: 10.1021/la902313t pmid: 19689141
[31] STOILJKOVIC Aleksandar, VENKATESH Rajan, KLIMOV Evgueni, et al. Poly(styrene-co-n-butyl acrylate) nanofibers with excellent stability against water by electrospinning from aqueous colloidal disper-sions[J]. Macromolecules, 2009, 42(16): 6147-6151.
doi: 10.1021/ma900354u
[32] YUAN Wei, ZHANG Keqin. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012, 28(43): 15418-15424.
doi: 10.1021/la303312q pmid: 23039272
[33] CAO Ding, LI Xinhua, YANG Lixia, et al. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions[J]. Journal of Applied Polymer Science, 2018, 135(26): 1-7.
[34] GIEBEL Elisabeth, GETZE Julia, ROCKER Thorsten, et al. The importance of crosslinking and glass transition temperature for the mechanical strength of nanofibers obtained by green electrospinning[J]. Macromolecular Materials and Engineering, 2013, 298(4): 439-446.
doi: 10.1002/mame.v298.4
[35] GONZALEZ Edurne, BARQUERO Aitor, MUNOZ-SANCHEZ BelÉn, et al. Green electrospinning of polymer latexes: a systematic study of the effect of latex properties on fiber morphology[J]. Nanomaterials, 2021, 11(3): 2-13.
doi: 10.3390/nano11010002
[36] MARQUES Susana C S, SOARES Paula I P, ECHEVERRIA Coro, et al. Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analy-sis[J]. RSC Advances, 2016, 6(80): 76370-76380.
doi: 10.1039/C6RA12713D
[37] MU Qifeng, ZHANG Qingsong, GAO Lu, et al. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAm nanofibers by electrospun packing[J]. Langmuir, 2017, 33(39): 10291-10301.
doi: 10.1021/acs.langmuir.7b02275 pmid: 28876075
[38] DIAZ Juan Esteban, BARRERO Antonio, MARQUEZ Manuel, et al. Absorption properties of microgel-PVP composite nanofibers made by electrospinning[J]. Macromolecular Rapid Communications, 2010, 31(2): 183-189.
doi: 10.1002/marc.200900534 pmid: 21590890
[39] FARIA Jaime, ECHEVERRIA Coro, BORGES Joao P, et al. Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning[J]. RSC Advances, 2017, 7(77): 48972-48979.
doi: 10.1039/C7RA07166C
[40] KEHREN Dominic, LOPEZ Astrid Catalina Molano, PICH Andrij. Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability[J]. Polymer, 2014, 55(9): 2153-2162.
doi: 10.1016/j.polymer.2014.03.025
[41] KEHREN Dominic, PICH Andrij. Fabrication and characterisation of microgel/polymer composite microfibres[J]. Macromolecular Materials and Engineering, 2013, 298(12): 1282-1293.
doi: 10.1002/mame.v298.12
[42] WILKE Philipp, COGER Vincent, NACHEV Milen, et al. Biocompatible microgel-modified electrospun fibers for zinc ion release[J]. Polymer, 2015, 61: 163-173.
doi: 10.1016/j.polymer.2015.01.078
[43] STÖBER Werner, FINK Arthur, BOHN Ernst. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
doi: 10.1016/0021-9797(68)90272-5
[44] HAN Yandong, LU Ziyang, TENG Zhaogang, et al. Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model[J]. Langmuir, 2017, 33(23): 5879-5890.
doi: 10.1021/acs.langmuir.7b01140 pmid: 28514596
[45] LI Shanshan, WAN Quan, QIN Zonghua, et al. Unraveling the mystery of Stöber silica's microporo-sity[J]. Langmuir, 2016, 32(36): 9180-9187.
doi: 10.1021/acs.langmuir.6b02472 pmid: 27548279
[46] STULAR Danaja, KRUSE Magnus, ZUPUNSKI Vera, et al. Smart stimuli-responsive polylactic acid-hydrogel fibers produced via electrospinning[J]. Fibers and Polymers, 2019, 20(9): 1857-1868.
doi: 10.1007/s12221-019-9157-8
[47] JIANG Shuai, HE Wei, LANDFESTER Katharina, et al. The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed[J]. Polymer, 2017, 127: 101-105.
doi: 10.1016/j.polymer.2017.08.061
[48] SUN Jinyuan, BUBEL Kathrin, CHEN Fei, et al. Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture[J]. Macromolecular Rapid Communications, 2010, 31(23): 2077-2083.
doi: 10.1002/marc.201000379 pmid: 21567634
[49] GONCALVES Adriana, ALMEIDA Filipe V, BORGES João Paulo, et al. Incorporation of dual-stimuli responsive microgels in nanofibrous membranes for cancer treatment by magnetic hyperthermia[J]. Gels, 2021, 7(1): 3-17.
doi: 10.3390/gels7010003
[50] JO Eunmin, LEE Seongwon, KIM Kyu Tae, et al. Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery[J]. Advanced Materials, 2009, 21(9): 968-972.
doi: 10.1002/adma.v21:9
[51] FRIEDEMANN Kathrin, TURSHATOV Andrey, LANDFESTER Katharina, et al. Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning[J]. Langmuir, 2011, 27(11): 7132-7139.
doi: 10.1021/la104817r pmid: 21561104
[52] HERRMANN Christine, TURSHATOV Andrey, CRESPY Daniel. Fabrication of polymer ellipsoids by the electrospinning of swollen nanoparticles[J]. ACS Macro Letters, 2012, 1(7): 907-909.
doi: 10.1021/mz300245b
[53] FRIEDEMANN Kathrin, CORRALES Tomas, KAPPL Michael, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012, 8(1): 144-153.
doi: 10.1002/smll.201101247 pmid: 22081486
[54] WEN Xian, XIONG Jian, LEI Sailing, et al. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications[J]. Advanced Fiber Materials, 2022, 4 (2), 145-161.
doi: 10.1007/s42765-021-00113-8
[55] HOHMAN Moses M, SHIN Michael, RUTLEDGE Gregory, et al. Electrospinning and electrically forced jets: I: stability theory[J]. Physics of Fluids, 2001, 13(8): 2201-2220.
doi: 10.1063/1.1383791
[56] GROβMANN Florian. Gilbert-taylor cones and multi-phase electrospinning[D]. Marburg: Philipps-Universität Marburg, 2009: 1-30.
[57] AGARWAL Seema, ECKHARDT Bruno, GROSSMANN Florian, et al. Gradient nanowires and nanotubes[J]. Physica Status Solidi: B, 2010, 247(10): 2451-2457.
doi: 10.1002/pssb.v247:10
[58] DING Bin, YU Jianyong. Electrospun nanofibers for energy and environmental applications[M]. Berlin: Springer, 2014: 2-50.
[59] 裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
[60] SIROHI Sidhharth, SINGH Dhirendra, NAIN Ratyakshi, et al. Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane[J]. RSC Advances, 2015, 5(43): 34377-34382.
doi: 10.1039/C4RA16988C
[1] 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92.
[2] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[3] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[4] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[5] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[6] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[7] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[8] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[9] 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41.
[10] 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7.
[11] 辛三法 王新厚 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2015, 36(07): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!