纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 39-47.doi: 10.13475/j.fzxb.20220706901

• 纺织工程 • 上一篇    下一篇

双组分混纺纱断裂比功与混纺比的关系

周宇阳1, 王旭斌1, 曹巧丽1, 李豪1, 钱丽莉1, 郁崇文1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2022-07-20 修回日期:2023-04-01 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 郁崇文(1962—),男,教授,博士。主要研究方向为纤维集合体成形的有关理论与技术、新型纺纱技术及相关理论、天然纤维资源开发利用等。E-mail:yucw@dhu.edu.cn
  • 作者简介:周宇阳(2000—),男,博士生。主要研究方向为纺纱基础理论。

Relationship between specific work of rupture and blended ratio of two-component blended yarns

ZHOU Yuyang1, WANG Xubin1, CAO Qiaoli1, LI Hao1, QIAN Lili1, YU Chongwen1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2022-07-20 Revised:2023-04-01 Published:2023-10-15 Online:2023-12-07

摘要:

为实现对不同混纺比下双组分混纺纱断裂比功的预测,从而指导生产中合理地选择混纺比,探究了双组分混纺纱断裂比功随混纺比变化的规律。通过对混纺纱断裂过程的分析,提出一个简单的混纺纱拉伸曲线模型。基于该模型建立了断裂比功与各组分纯纺纱拉伸性能、混纺比之间的关系式,并使用实验数据对其进行验证。结果表明,该关系式可较好地预测出断裂比功随混纺比变化的趋势,预测的误差大小与现有断裂强度、断裂伸长率表达式的预测误差相似,在可接受的范围内。本研究为预测混纺纱断裂比功提供了一种比较简单的方法,可为混纺纱的生产提供指导。

关键词: 双组分纱, 混纺比, 断裂比功, 断裂强度, 断裂伸长率, 性能预测

Abstract:

Objective Compared with the tenacity, specific work of rupture can specify the resistance of yarn to breakage more accurately. The specific work of rupture for blended yarn is strongly connected with blended ratio in blended yarn, but little attention has been concentrated on this field. Therefore, in order to predict the specific work of rupture for two-component blended yarn with various blended ratios and guide the reasonable selection of blended ratio in production, the law of varying specific work of rupture for two-component blended yarn with blended ratio was investigated.

Method Based on the analysis of rupture process for two-component blended yarn, some special points on the stress-strain curve of blended yarn were predicted using the stress-strain curves of pure spun yarns. By linearly connecting these points, a simple model of stress-strain curve for blended yarn was obtained. According to this model, expression of specific work of rupture was obtained. Cotton/viscose blended yarns were then spun and its tensile properties were tested so as to verify the established relationship in this paper. The data from previous literature were also used to further verification of the relationship's accuracy and applicability.

Results The predicted and experimental values of specific work of rupture for cotton/viscose, cotton/bamboo pulp fiber, cotton/modacrylic, cotton/soybean protein fiber, cotton/high strength polyamide, hemp/polyamide, cashmere/wool and polyester/soybean protein fiber yarns were considered in this research (Fig.7, Fig. 9-15). The predicted relations of specific work of rupture with blended ratio are essentially consistent according to the experimental results. The prediction error of specific work of rupture by this expression was acceptable and similar to that of tenacity and breaking extension by predecessors' expression. There are two main reasons for the prediction error of specific work of rupture, which are the simplification of tensile curve and the prediction error of tenacity and breaking extension. The actual stress-strain curves of blended yarns are often smooth and convex, while the predicted curve is simplified as straight or broken line (Fig. 4 and Fig. 5). When the actual curve is convex, such as cotton/viscose blended yarn (Fig. 7 and Fig. 8), cotton/bamboo pulp fiber blended yarn (Fig. 9) and polyester/soybean protein fiber blend yarn (Fig. 15), the predicted value of the specific work of rupture will be smaller than the experimental. On the contrary, when the actual curve is concave, such as high proportion of modacrylic blended yarn and high proportion of wool blended yarn, the predicted values of specific work of rupture will be larger than the experimental values. On the other hand, if the predicted value of tenacity or breaking extension is larger than the experimental, the predicted value of specific work of rupture would also be larger than the experimental. On the contrary, the predicted values of tenacity or breaking extension was smaller than the experimental, such as cotton/soybean protein fiber (Fig. 11), cotton/high strength polyamide(Fig. 12) and hemp/polyamide blended yarns (Fig. 13), the predicted values of specific work of rupture would also be smaller than the experimental.

Conclusion The relationship between specific work of rupture and blended ratio of two-component blended yarn is established in this paper. Then the applicability and reliability of the relationship are verified by the experimental data. It was found that, similar to the tenacity and breaking extension, the trend of specific work of rupture for blended yarn with the blended ratio varies around the critical blended ratio. This work provides a simple method for predicting the specific rupture work of blended yarn, and the prediction error is similar to that of existing expressions of tenacity or breaking extension and is within the acceptable range. Therefore, this study can provide guidance for blended yarn manufacture.

Key words: two-component yarn, blended ratio, specific work of rupture, tenacity, breaking extension, property prediction

中图分类号: 

  • TS104.5

图1

A组分纯纺纱与B组分纯纺纱的拉伸曲线"

图2

混纺纱断裂强度与混纺比的关系"

图3

混纺纱断裂伸长率与混纺比的关系"

图4

混纺纱实际与预测拉伸曲线(b≤bC)"

图5

混纺纱实际与预测拉伸曲线(b>bC)"

图6

纯棉纱与纯粘胶纱拉伸曲线"

图7

棉/粘胶纤维混纺纱拉伸性能"

图8

棉/粘胶混纺纱拉伸曲线"

表1

文献中各种纯纺纱的拉伸性能"

混纺品种(A/B) SA/(cN·tex-1) SB/(cN·tex-1) S'B/(cN·tex-1) εA/% εB/%
棉/竹浆纤维[15] 16.00 12.50 7.72 6.21 10.24
棉/腈氯纶[16] 15.00 14.61 9.39 5.42 16.60
棉/大豆蛋白复合纤维[11] 15.87 23.44 6.40 6.34 13.40
棉/高强锦纶[17] 17.20 40.00 5.30 6.60 23.40
大麻/锦纶[18] 10.70 21.00 2.11 3.10 22.70
羊绒/羊毛[19] 5.40 9.00 1.50 4.04 11.80
涤纶/大豆蛋白复合纤维[11] 40.06 23.44 10.00 8.18 13.40

图9

棉/竹浆纤维混纺纱拉伸性能"

图10

棉/腈氯纶混纺纱拉伸性能"

图11

棉/大豆蛋白复合纤维混纺纱拉伸性能"

图12

棉/高强锦纶混纺纱拉伸性能"

图13

大麻/锦纶混纺纱拉伸性能"

图14

羊绒/羊毛混纺纱拉伸性能"

图15

涤纶/大豆蛋白复合纤维混纺纱拉伸性能"

[1] 陈利. 三维纺织技术在航空航天领域的应用[J]. 航空制造技术, 2008(4): 45-47.
CHEN Li. Application of 3D textile technology in aerospace field[J]. Aeronautical Manufacturing Technology, 2008(4): 45-47.
[2] 王超, 张宇菲, 丁彬, 等. 聚丙烯非织造土工布的研究进展及应用前景[J]. 产业用纺织品, 2021, 39(1): 1-7,28.
WANG Chao, ZHANG Yufei, DING Bin, et al. Research progress and application prospect of polypropylene nonwoven geotextiles[J]. Technical Textiles, 2021, 39(1): 1-7,28.
[3] 米永刚. 建筑用纺织材料的应用研究进展[J]. 棉纺织技术, 2015, 43(2): 78-81.
MI Yonggang. Application research progress of textile material used in construction field[J]. Cotton Textile Technology, 2015, 43(2): 78-81.
[4] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(1): 74-79.
MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn[J]. Journal of Textile Research, 2022, 43(1): 74-79.
doi: 10.1177/004051757304300203
[5] HAMBURGER W J. The industrial application of the stress-strain relationship[J]. Journal of The Textile Institute Proceedings, 1949, 40(7): 700-720.
[6] MONEGO C J. The mechanics of blended twisted continuous-fliament and staple fibre yarns[D]. Manchester: The University of Manchester, 1973: 12-17.
[7] PAN N. Development of a constitutive theory for short-fiber yarns. part IV: the mechanics of blended fibrous structures[J]. Journal of The Textile Institute, 1996, 87(3): 467-483.
doi: 10.1080/00405009608631349
[8] HAMBURGER W J. Mechanics of abrasion of textile materials[J]. Textile Research Journal, 1945, 15(5): 169-177.
doi: 10.1177/004051754501500501
[9] SCHIEFER H F, APPEL W D, KRASNY J F, et al. Impact properties of yarns made from different fibers[J]. Textile Research Journal, 1953, 23(7): 489-494.
doi: 10.1177/004051755302300707
[10] DUCKETT K E, GOSWAMI B C, RAMEY H H. Mechanical properties of cotton/polyester yarns: part I: contributions of interfiber friction to breaking energy[J]. Textile Research Journal, 1979, 49(5): 262-267.
doi: 10.1177/004051757904900504
[11] 杨庆斌, 秦德清, 孔燕, 等. 大豆蛋白纤维混纺纱混纺比与拉伸性能的关系[J]. 棉纺织技术, 2007, 35(2): 13-16.
YANG Qingbin, QIN Deqing, KONG Yan, et al. Relation between blending ratio and tensile property of soybean protein fiber blended yarn[J]. Cotton Textile Technology, 2007, 35(2): 13-16.
[12] 于璐, 凌明花, 谢黎. 聚乳酸(玉米)混纺纱强伸性与混纺比之间的关系[J]. 西安工程大学学报, 2010, 24(3): 290-293.
YU Lu, LING Minghua, XIE Li. The relationship between tensile properties and blended ratio of PLA/Modal blended yarn[J]. Journal of Xi'an Polytechnic University, 2010, 24(3): 290-293.
[13] 郁崇文, 常英健, 沈丕华. 双组分纤维混纺纱强伸性能的研究[J]. 东华大学学报(自然科学版), 2002, 28(1): 18-20.
YU Chongwen, CHANG Yingjian, SHEN Pihua. Theoretic elongation expression for blended yarn composed of dual component fibers and its experimental testing[J]. Journal of Donghua University(Natural Science), 2002, 28(1): 18-20.
[14] GUPTA D K, EL SHIEKH A. The mechanics of blended yarns[C]// Applied Polymer Symposia. New York: John Wiley & Sons, Inc, 1975: 395-316.
[15] 马顺彬, 吴佩云, 莫靖昱. 竹纤维纯纺纱和混纺纱拉伸性能探讨[J]. 现代纺织技术, 2009, 17(3): 54-57.
MA Shunbin, WU Peiyun, MO Jingyu. Discussion on tensile properties of pure and blended bamboo fiber yarns[J]. Advanced Textile Technology, 2009, 17(3): 54-57.
[16] 刘玲, 余进, 顾闻彦, 等. 混纺比对腈氯纶/棉混纺纱拉伸性能的影响[J]. 南通大学学报(自然科学版), 2009, 8(4): 45-49.
LIU Ling, YU Jin, GU Wenyan, et al. Effect of blended ratio on tensile properties of modacrylic cotton blended yarn[J]. Journal of Nantong University(Natural Science Edition), 2009, 8(4): 45-49.
[17] 刘高丞. 职业装用高强锦纶混纺纱线及面料的研究与开发[D]. 上海: 东华大学, 2021: 18-19.
LIU Gaocheng. Study on high strength nylon blended yarn and fabrics for vocational smock[D]. Shanghai: Donghua University, 2021: 18-19.
[18] 徐迪. 大麻混纺纱及其织物性能研究[D]. 上海: 东华大学, 2020: 21-22.
XU Di. Hemp blended yarn and its fabric properties[D]. Shanghai: Donghua University, 2020: 21-22.
[19] 赵党锋, 陈萧. 混纺比对拉伸羊毛/羊绒混纺纱线性能的影响[J]. 毛纺科技, 2010, 38(9): 35-38.
ZHANG Dangfeng, CHEN Xiao. Infuence of blending ratio on performance of stretched wool/cashmere yarn[J]. Wool Textile Journal, 2010, 38(9): 35-38.
[1] 李久刚, 金鑫鹏, 邓文韬, 秦雪, 张贺, 黄丛, 刘可帅. 氧化铝纱线的合股数与捻度对其强度的影响[J]. 纺织学报, 2023, 44(10): 48-52.
[2] 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54.
[3] 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89.
[4] 郭明瑞, 高卫东. 环锭数码纺纱线特征参数及其对织物外观影响[J]. 纺织学报, 2022, 43(11): 41-45.
[5] 李杨, 彭来湖, 郑秋扬, 胡旭东. 基于分数阶模型的纱线蠕变性能模拟与预测[J]. 纺织学报, 2022, 43(11): 46-51.
[6] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[7] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[8] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[9] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[10] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[11] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[12] 涂莉, 孟家光, 李欣, 李娟子. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80.
[13] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[14] 巫莹柱 梁家豪 范菲 李孔兰 杜婷 单颖法. 显微投影法测定棉/苎麻混纺比的不确定度评定[J]. 纺织学报, 2018, 39(11): 33-37.
[15] 贺玉东 薛元 杨瑞华 刘曰兴 张国清. 双通道环锭数码纺混色纱的结构及其性能[J]. 纺织学报, 2018, 39(11): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!