纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 75-80.doi: 10.13475/j.fzxb.20220901901

• 纺织工程 • 上一篇    下一篇

天然绿色蚕丝抗氧化组分向皮肤迁移的特性研究

谭婷, 李哲阳, 马明波(), 周文龙   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2022-09-08 修回日期:2023-07-16 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 马明波(1986—),男,副研究员,博士。主要研究方向为绿色及功能性纺织材料的研究和开发。E-mail:mamingbo@zstu.edu.cn
  • 作者简介:谭婷(1997—),女,硕士。主要研究方向为绿色及功能性纺织材料。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51903220)

Study of transdermal characteristics of antioxidant substances in naturally green-colored silk

TAN Ting, LI Zheyang, MA Mingbo(), ZHOU Wenlong   

  1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-09-08 Revised:2023-07-16 Published:2023-10-15 Online:2023-12-07

摘要:

为明晰天然绿色蚕丝产品贴身使用时的抗氧化性能,利用经皮渗透实验研究了其抗氧化组分向皮肤迁移的性质,并利用自由基清除法评价了渗透后皮肤各层的抗氧化活性。研究结果表明:天然绿色蚕丝抗氧化组分向皮肤迁移具有时间依赖性,且和皮肤表面的湿度、酸碱性有关;抗氧化组分迁移量与样品的皮肤接触时间正相关;接触时间少于12 h,抗氧化组分更多地分布于角质层中,12 h后抗氧化组分更多地渗透并累积于真皮层中,其抗氧化组分不能穿透整个皮层;微湿的皮肤环境更有利于抗氧化组分向皮肤迁移,酸性皮肤环境有利于抗氧化组分向皮肤深层迁移;由于抗氧化物组分的存在,各皮层的抗氧化活性得到了显著增强,且具有剂量效应。

关键词: 天然绿色蚕丝, 抗氧化物质, 抗氧化纤维, 黄酮类, 皮肤, 迁移特性

Abstract:

Objective Naturally green-colored silk has excellent antioxidant property due to the intrinsic flavonoid-based pigments. It is a promising alternative antioxidant functional natural fiber for being as healthcare textiles. However, the transdermal characteristics, influencing factors and dose effect relationship of antioxidant components from naturally green-colored silk to skin have not been reported, so it is necessary to study them in order to clarify the antioxidant effect toward the human skin when using its products.

Method Transdermal permeation test were carried out on a transdermal permeation device and pork skins were used to simulate the permeation process of the antioxidant substances to the skin from the silk fiber. The pure water extract of natural green-colored silk and the extract of above skin tissues were analyzed by high performance liquid chromatography. The Folin phenol method was used to quantitatively detect the antioxidant extracts in each cortex. The classical DPPH radical scavenging method was used to evaluate the antioxidant activity of pig skin tissues after migration test.

Results The results of high-performance liquid chromatography analysis show that the antioxidant components in the fibers can migrate to the stratum corneum layer and dermis layer of the skin (Fig. 2). The antioxidants were found to be present mainly in the stratum corneum layer when the contact time was less than 12 h, but they were accumulated mainly in the dermis layer when the contact time exceeded 12 h (Fig. 4). The antioxidants could not permeate the whole skin layers. Under humidity conditions similar to skin sweating, the total polyphenol content in the skin reached at (11.7±2.9) μg/cm2, accounting for 11.0% of the total fiber phenol content (Tab. 1). Antioxidant components migrated in general in acidic skin environments and migrated more to the deeper layers of the skin under the normal skin environment. In the acidic skin environment, the polyphenol content in the stratum corneum and dermis layer were 2.9 μg/cm2 and 10.5 μg/cm2 (Fig. 3), respectively. Both of the stratum corneum layer and dermis layer showed considerable improvement in antioxidant activity, and it obeyed the dose-response effect, and the more antioxidant components absorbed by the skin layers, the greater the free radical scavenging capacity of the skin layers. Volunteer trials were also carried out. After 24 h of fabric-to-skin contact, the content of polyphenols detected in the stratum corneum of the skin ranged from 5.1 to 6.6 μg/cm2, with an average value of (5.7±0.5) μg/cm2 (Fig. 5). Due to the high content of antioxidant components presented in the skin, the average scavenging rate toward the free radicals in the stratum corneum of the skin of volunteers was(76.7±8.2)%, which was significantly higher than the antioxidant activity of the stratum corneum (37.8±3.7)% of the pig skin experimental group at the same condition.

Conclusion The antioxidant components in the fibers can migrate to the stratum corneum layer and dermis layer of the skin. The amount of antioxidant permeated to the skin depended on the contact time, moisture, and the acidity and basicity of the skin. The amount of antioxidants in the skin was positively related to the contact time. The skin surface with light moisture facilitated the permeation of antioxidants to the skin, but it is not that the moister the skin, the greater the migration, similar to the human body skin with slightly sweating environment which is better for the antioxidant to permeate to the skin. Acidic skin environment enabled a deeper permeation of the antioxidants as compared with the basic skin environment. The antioxidant components in the fibers can migrate into the human skin and endow the skin with excellent antioxidant capacity. This enables naturally green-colored silk to be used as a promising antioxidant textile material.

Key words: naturally green-colored silk, antioxidant substance, antioxidant fiber, flavonoids, skin, transdermal characteristic

中图分类号: 

  • TS102.33

图1

经皮渗透实验装置的结构示意图"

图2

天然绿色蚕丝及皮层抗氧化物提取物的液相色谱图"

表1

24 h后天然绿色蚕丝向皮肤各层渗透的多酚含量及其占纤维总酚含量的百分率"

皮层 多酚含量/(μg·cm-2) 多酚占纤维总酚含量的
百分率/%
1∶0 1∶5 1∶10 1∶0 1∶5 1∶10
角质层 1.9±1.1 2.8±1.9 2.3±0.6 1.8±1.0 2.6±1.8 2.1±0.6
真皮层 1.9±1.4 8.9±3.4 7.8±2.3 1.8±1.3 8.3±3.1 7.3±2.1
总计 3.8±2.0 11.7±2.9 10.1±2.8 3.6±1.9 11.0±2.7 9.4±2.6

图3

酸碱性皮肤环境对多酚含量及抗氧化活性的影响"

图4

接触时间对皮肤中多酚含量及其抗氧化活性的影响"

图5

从志愿者皮肤角质层中检测到的多酚含量及其抗氧化活性"

[1] DAIMON T, HIRAYAMA C, KANAI M, et al. The silkworm green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11471-11476.
doi: 10.1073/pnas.1000479107 pmid: 20534444
[2] MA Mingbo, HUSSAIN Munir, DONG Suozhuai, et al. Characterization of the pigment and antioxidant property of naturally yellow-colored domestic silk[J]. Dyes and Pigments, 2016, 124: 6-11.
doi: 10.1016/j.dyepig.2015.08.003
[3] 杜鑫, 周金钱, 谷利群, 等. “十二五”浙江省家蚕新品种实验室鉴定结果分析[J]. 蚕桑通报, 2016, 47(1): 20-22.
DU Xin, ZHOU Jinqian, GU Liqun, et al. Analysis of laboratory trial rearing results in zhejiang province during the twelve five-year plan period[J]. Bulletin of Sericulture, 2016, 47(1): 20-22.
[4] LV Zongyu, TAN Ting, HUSSAIN Munir, et al. Effects of crosslinking sericin on the color fastness and antioxidant activity of naturally colored silk[J]. Fibers and Polymers, 2022, 23(3): 658-665.
doi: 10.1007/s12221-022-3082-y
[5] KURIOKA A, YAMAZAKI M. Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm[J]. Bioscience Biotechnology & Biochemistry, 2002, 66(6): 1396-1399.
[6] LI Jie, MA Mingbo, DONG Suozhuai, et al. Antioxidant properties of naturally-colored domestic silk[J]. AATCC Review, 2018, 18(1): 57-61.
doi: 10.14504/ar.18.1.3
[7] KATIYAR S. Proanthocyanidins from grape seeds inhibit UV-radiation-induced immune suppression in mice: detection and analysis of molecular and cellular targets[J]. Photochemistry & Photobiology, 2015, 91(1): 156-162.
[8] MARTÍ M L, ALONSO C, MARTÍNEZ V, et al. Cosmetotextiles with gallic acid: skin reservoir effect[J]. Journal of Drug Delivery, 2013, 8: 1-7.
[9] CORNELIA W, UTA-CHRISTINA H, SEBASTIAN B, et al. Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis[J]. Clinical Cosmetic & Investigational Dermatology, 2013, 6: 115-120.
[10] LUNA Pollini, LINA Cossignani, CRISTINA Juan, et al. Extraction of phenolic compounds from fresh apple pomace by different non-conventional techniques[J]. Molecules, 2021, 26(14): 4272-4280.
doi: 10.3390/molecules26144272
[11] 张培成. 黄酮化学[M]. 北京: 化学工业出版社, 2009: 25-27.
ZHANG Peicheng. Flavonoid chemistry[M]. Beijing: Chemical Industry Press, 2009: 25-27.
[1] 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178.
[2] 张龙琳, 石茜, 张敏, 周莉, 李新荣. 基于跑步动作肌纤维主动力仿真的下肢皮肤形变表征[J]. 纺织学报, 2023, 44(03): 195-200.
[3] 朱晓荣, 何佳臻, 向攸慧, 王敏. 热防护服蓄热防护与放热危害双重特性的研究进展[J]. 纺织学报, 2023, 44(01): 228-237.
[4] 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147.
[5] 吕晓双, 刘丽萍, 俞建勇, 丁彬, 李召岭. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43(10): 183-191.
[6] 郭静, 周倩雯, 何佳臻. 形变状态下热防护织物的蓄放热双重特性[J]. 纺织学报, 2022, 43(07): 67-74.
[7] 张亚琦, 李小辉. 运动时关节部位皮肤形变量预测方法[J]. 纺织学报, 2022, 43(06): 140-144.
[8] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[9] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[10] 王伟荣, 丛洪莲. 基于下肢运动特征的纬编无缝瑜伽裤结构设计[J]. 纺织学报, 2021, 42(06): 140-145.
[11] 张昭华, 唐香宁, 李俊, 李璐瑶. 织物与皮肤动态接触下的湿感觉阈限与强度评价[J]. 纺织学报, 2021, 42(02): 93-100.
[12] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[13] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[14] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[15] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!