纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 81-89.doi: 10.13475/j.fzxb.20220804801

• 纺织工程 • 上一篇    下一篇

纱线结构对苎麻短纤纱复合材料拉伸性能的影响

左祺1, 吴华伟1,2, 王春红1(), 杜娟娟3   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.浙江农林大学暨阳学院 工程技术学院, 浙江 绍兴 312000
    3.天津工业大学 人工智能学院, 天津 300387
  • 收稿日期:2022-08-16 修回日期:2023-07-21 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 王春红(1980—),女,教授,博士。主要研究方向为绿色复合材料的开发与应用。E-mail:wangchunhong@tiangong.edu.cn
  • 作者简介:左祺(1995—),女,博士生。主要研究方向为天然纤维增强复合材料的多维度结构设计。
  • 基金资助:
    天津市研究生科研创新项目(2020YJSB063)

Effect of yarn structure on tensile properties of ramie staple yarn reinforced composites

ZUO Qi1, WU Huawei1,2, WANG Chunhong1(), DU Juanjuan3   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Engineering and Technology, Jiyang College of Zhejiang Agriculture and Forestry University, Shaoxing, Zhejiang 312000, China
    3. School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
  • Received:2022-08-16 Revised:2023-07-21 Published:2023-10-15 Online:2023-12-07

摘要:

为揭示纱线结构对短纤纱复合材料性能的影响与其对纱线性能影响的区别,通过环锭纺制备了不同线密度以及捻系数的苎麻短纤纱,再通过树脂浸渍法制备了苎麻短纤纱增强不饱和聚酯树脂复合材料。分别对苎麻短纤纱的拉伸性能以及苎麻短纤纱增强复合材料的拉伸性能进行了测试和分析。结果表明:随着纱线线密度的增加,苎麻短纤纱增强复合材料的拉伸强度先降低后增大再降低,当线密度为80 tex时复合材料拉伸强度在长短隔距测试中都达到最大值;随着纱线捻系数的增加,纱线断裂强度在临界捻系数为300处达到最大,但是苎麻短纤纱增强复合材料在长隔距测试下拉伸强度逐渐增大,未出现临界点,而在短隔距测试中的临界捻系数增加到360,最大拉伸强度为528.39 MPa;树脂使纱线内部固结,纱线中纤维之间的抱合力转变为纤维与树脂的界面作用,在短隔距临界捻系数处纱线捻度角对拉伸强度的负面影响与对界面机械锁结的积极影响达到平衡。

关键词: 苎麻短纤纱, 复合材料, 纱线结构, 临界捻系数, 拉伸隔距

Abstract:

Objective Bast fiber reinforced composites with lightweight quality, low cost, biodegradability, reusability and designability have been widely used in numerous applications in recent years. The length of extracted bast fibers, unlike synthetic fibers capable of continuous production, is limited, which is not beneficial for composite manufacturing and stress transfer. Staple spinning, a traditional method in the textile industry for acquiring continuous short fibers, breaks through the limitation of bast fiber length. Staple yarns are the foundations of various fabric reinforced composites and yarn pultrusion composites. One of the most important factors in determining the properties of staple yarn-based composites is the yarn structure. The effects of yarn count and twist on breaking properties of yarns are well known in the textile industry. However, the impacts of them on yarn reinforced composites have been rarely reported in the literature. Based on the relationship between staple yarn and staple yarn reinforced composites, the influences of the above structure factors on tensile properties of bast fiber staple yarns and their composites are investigated.

Method The ramie fibers were used in the spinning process to prepare staple yarns with various yarn counts and twist factors. The ramie fiber staple yarn reinforced unsaturated polyester resin composite was fabricated via immersing and squeezing process. The breaking properties of ramie fiber staple yarns and tensile properties of ramie fiber staple yarn reinforced composites were tested and analyzed, respectively. Morphologies of ramie staple yarn and fracture section of ramie staple yarn reinforced composite were observed by using scanning electron microscope. The internal defects of ramie fiber staple yarn reinforced composites with different yarn counts or twist factors were detected by water immersion ultrasonic C-scan defect detector.

Results The results showed that as the yarn count increased, the yarn diameter and breaking force of ramie staple yarn increased. When the yarn count was 80 tex, the tensile strengths of ramie staple yarn reinforced composite reached maximum in both short and long gauge tensile test. In the long gauge tensile test, the tensile strength of ramie staple yarn reinforced composite increased with increasing twist factor, whereas in the short gauge test, the maximal tensile strength was found to be 528.39 MPa at 360 critical twist factor. In the short gauge test, the tensile properties were subject to the balance of mechanical interlocking and twisting force components. However, mechanical interlocking failed to perform its corresponding function for the tensile properties in the long gauge test due to the discontinuity of the fibers in the yarn. In ultrasonic detecting, the looser ramie fiber staple yarn, the more interfacial and unimpregnated defects in ramie staple yarn reinforced composites.

Conclusion In conclusion, ramie staple yarn reinforced composite with 80 tex and 360 twist factor is recommended for bast fiber reinforced composite industry. Moderate yarn count and twist factor are conducive to yarn infiltration in staple yarn reinforced composite. Ramie fibers are easily pulled-out by resin in coarser yarn reinforced composite in the constant twist factor, resulting in the decrease of tensile strength of ramie fiber staple yarn reinforced composite after exceeding 80 tex. Because of the larger arrangement angle of fibers in the yarn with the increasing twist, ramie fibers are more difficult to pull out from resin due to the mechanical locking interface effect. Under the short gauge testing, the load bearing effect of the fibers in the ramie fiber staple yarn reinforced composites is fully exerted. Therefore, the tensile strength of ramie fiber staple yarn reinforced composite in the short distance between clamps test is higher than in the long gauge tensile test. The selection principle of twist factor is to balance the positive effect of the fiber inclination angle on the interface and the negative effect on the load-carrying efficiency. There is no doubt that the yarn structure possessed significant potential for promoting the development of bast fiber staple yarn reinforced composite.

Key words: ramie fiber staple yarn, composite, yarn structure, critical twist factor, distance between clamps in tensile test

中图分类号: 

  • TS129

图1

苎麻短纤纱增强复合材料的制备流程图"

表1

不同线密度苎麻短纤纱的基本性能"

线密度/tex 实际
捻度/(捻·
(10 cm)-1)
表面捻度
角/(°)
断裂
强力/cN
理论值 实际值
40 41.82±5.28 60.11±2.77 17.92±1.84 846.15±55.90
50 52.16±1.88 54.04±3.67 20.69±1.89 1 036.70±150.45
60 63.64±2.88 47.43±1.63 23.11±2.09 1 202.42±92.08
70 69.25±3.32 45.79±0.89 22.21±1.95 1 414.41±95.80
80 78.00±6.71 44.08±1.00 17.85±2.80 1 548.50±106.06
90 91.12±5.00 41.31±1.65 21.19±3.35 2 015.77±204.67
100 100.55±4.07 36.63±1.40 22.39±4.23 2 414.65±299.16
110 107.83±7.65 35.29±1.30 21.18±3.40 2 470.63±123.04
120 120.96±4.51 34.89±1.53 21.40±4.40 2 874.36±217.12

图2

40~120 tex纱线的表观形貌"

图3

不同线密度苎麻短纤纱的拉伸性能"

图4

不同线密度苎麻短纤纱增强复合材料的拉伸性能"

图5

40~120 tex苎麻短纤纱增强复合材料不同测试隔距下的断面SEM照片"

图6

40~120 tex苎麻短纤纱增强复合材料水浸超声波B-扫描图"

表2

不同捻系数苎麻短纤纱的基本性能"

理论
捻系
实际线
密度/tex
实际捻
度/(捻·
(10 cm)-1)
表面捻度
角/(°)
断裂强
力/cN
260 84.75±3.20 38.87±1.41 30.36±4.61 1 700.94±155.82
280 85.34±5.92 41.25±1.40 25.82±5.36 1 742.80±218.76
300 93.45±1.43 41.51±1.39 25.85±3.33 1 844.80±224.62
320 95.54±0.30 42.91±0.91 26.23±4.37 1 789.16±258.56
340 95.48±1.15 46.53±2.18 28.67±4.47 1 702.81±217.50
360 94.42±0.97 49.84±1.95 25.24±3.37 1 497.16±195.19
380 94.17±3.92 52.06±2.38 27.38±4.71 1 351.61±263.95

图7

不同捻系数苎麻短纤纱的表观形貌"

图8

不同捻系数苎麻短纤纱的拉伸性能"

图9

不同捻系数苎麻短纤纱增强复合材料的拉伸性能"

图10

不同捻系数苎麻短纤纱增强复合材料在不同测试隔距下的断面SEM照片"

图11

不同捻系数苎麻短纤纱增强复合材料的水浸超声波B-扫描图"

[1] ZWAWI M. A review on natural fiber bio-composites; surface modifications and applications[J]. Molecules, 2021, 26(2): 404.
doi: 10.3390/molecules26020404
[2] AL FARUQUE M A, SALAUDDIN M, RAIHAN M M, et al. Bast fiber reinforced green polymer composites: a review on their classification, properties, and applications[J]. Journal of Natural Fibers, 2022, 19(14): 8006-8021.
doi: 10.1080/15440478.2021.1958431
[3] 伏立松, 张淑洁, 王瑞, 等. 管道修复用涤纶/苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(2): 52-57.
FU Lisong, ZHANG Shujie, WANG Rui, et al. Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation[J]. Journal of Textile Research, 2020, 41(2): 52-57.
doi: 10.1177/004051757104100109
[4] 屈永帅, 施朝禾, 张瑞云, 等. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
QU Yongshuai, SHI Chaohe, ZHANG Ruiyun, et al. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers[J]. Journal of Textile Research, 2020, 41(11): 81-88.
[5] GOUTIANOS S, PEIJS T. The optimisation of flax fibre yarns for the development of high-performance natural fibre composites[J]. Advanced Composites Letters, 2003, 12(6): 237-241.
[6] LONG Y, ZHANG Z, FU K, et al. Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly (lactic) acid composites[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109389.
[7] AZIM A Y M A, ALIMUZZAMAN S, SARKER F. Optimizing the fabric architecture and effect of γ-radiation on the mechanical properties of jute fiber reinforced polyester composites[J]. ACS Omega, 2022, 7(12): 10127-10136.
doi: 10.1021/acsomega.1c06241 pmid: 35382272
[8] 夏治刚, 徐卫林, 叶汶祥. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6): 147-154.
XIA Zhigang, XU Weilin, YE Wenxiang. Review of staple yarn spinning technology and analysis of its key features[J]. Journal of Textile Research, 2013, 34(6): 147-154.
[9] JIANG Z, YU C, YANG J, et al. Estimation of yarn strength based on critical slipping length and fiber length distribution[J]. Textile Research Journal, 2019, 89(2): 182-194.
doi: 10.1177/0040517517741160
[10] MA H, LI Y, SHEN Y, et al. Effect of linear density and yarn structure on the mechanical properties of ramie fiber yarn reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 98-108.
doi: 10.1016/j.compositesa.2016.04.012
[11] HENGSTERMANN M, HASAN M M B, ABDKADER A, et al. Development of a new hybrid yarn construction from recycled carbon fibers (rCF) for high-performance composites: Part-II: influence of yarn parameters on tensile properties of composites[J]. Textile Research Journal, 2017, 87(13): 1655-1664.
doi: 10.1177/0040517516658511
[12] MA H, LI Y, WANG D. Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(7): 687-696.
doi: 10.1177/0731684413520187
[13] OMRANI F, WANG P, SOULAT D, et al. Mechanical properties of flax-fibre-reinforced preforms and composites: influence of the type of yarns on multi-scale characterisations[J]. Composites Part A: Applied Science and Manufacturing, 2017, 93: 72-81.
doi: 10.1016/j.compositesa.2016.11.013
[14] YU X, FAN W, AZWAR E, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.128446.
[15] ZAIDI B M, ZHANG J, MAGNIEZ K, et al. Optimizing twisted yarn structure for natural fiber-reinforced polymeric composites[J]. Journal of Composite Materials, 2018, 52(3): 373-381.
doi: 10.1177/0021998317707333
[16] ZUO Q, SALLEH K M, WANG C, et al. Prediction and analysis of properties of ramie fiber staple yarn reinforced unsaturated polyester composite based on fiber packing density[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.109869.
[17] 何梅洪, 杨涛, 张斌, 等. 复合材料超声检测复合缺陷多层成像实验分析[J]. 宇航材料工艺, 2015, 45(5): 80-84.
HE Meihong, YANG Tao, ZHANG Bin, et al. Experiment analysis of multi imaging by ultrasonic testing of complex defects in composite material[J]. Aerospace Materials & Technology, 2015, 45(5): 80-84.
[18] 敖利民, 唐雯, 王爱林. 亚麻/有色涤纶长丝包缠复合纱的外观与性能[J]. 纺织学报, 2019, 40(8): 40-47.
AO Limin, TANG Wen, WANG Ailin. Appearance and performance of linen/colored polyester wrapping composite yarn[J]. Journal of Textile Research, 2019, 40(8): 40-47.
[1] 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195.
[2] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[3] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[4] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[5] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[6] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[7] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[8] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[9] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[10] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[11] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[12] 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69.
[13] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[14] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[15] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!