纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 81-89.doi: 10.13475/j.fzxb.20220804801
ZUO Qi1, WU Huawei1,2, WANG Chunhong1(), DU Juanjuan3
摘要:
为揭示纱线结构对短纤纱复合材料性能的影响与其对纱线性能影响的区别,通过环锭纺制备了不同线密度以及捻系数的苎麻短纤纱,再通过树脂浸渍法制备了苎麻短纤纱增强不饱和聚酯树脂复合材料。分别对苎麻短纤纱的拉伸性能以及苎麻短纤纱增强复合材料的拉伸性能进行了测试和分析。结果表明:随着纱线线密度的增加,苎麻短纤纱增强复合材料的拉伸强度先降低后增大再降低,当线密度为80 tex时复合材料拉伸强度在长短隔距测试中都达到最大值;随着纱线捻系数的增加,纱线断裂强度在临界捻系数为300处达到最大,但是苎麻短纤纱增强复合材料在长隔距测试下拉伸强度逐渐增大,未出现临界点,而在短隔距测试中的临界捻系数增加到360,最大拉伸强度为528.39 MPa;树脂使纱线内部固结,纱线中纤维之间的抱合力转变为纤维与树脂的界面作用,在短隔距临界捻系数处纱线捻度角对拉伸强度的负面影响与对界面机械锁结的积极影响达到平衡。
中图分类号:
[1] |
ZWAWI M. A review on natural fiber bio-composites; surface modifications and applications[J]. Molecules, 2021, 26(2): 404.
doi: 10.3390/molecules26020404 |
[2] |
AL FARUQUE M A, SALAUDDIN M, RAIHAN M M, et al. Bast fiber reinforced green polymer composites: a review on their classification, properties, and applications[J]. Journal of Natural Fibers, 2022, 19(14): 8006-8021.
doi: 10.1080/15440478.2021.1958431 |
[3] | 伏立松, 张淑洁, 王瑞, 等. 管道修复用涤纶/苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(2): 52-57. |
FU Lisong, ZHANG Shujie, WANG Rui, et al. Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation[J]. Journal of Textile Research, 2020, 41(2): 52-57.
doi: 10.1177/004051757104100109 |
|
[4] | 屈永帅, 施朝禾, 张瑞云, 等. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88. |
QU Yongshuai, SHI Chaohe, ZHANG Ruiyun, et al. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers[J]. Journal of Textile Research, 2020, 41(11): 81-88. | |
[5] | GOUTIANOS S, PEIJS T. The optimisation of flax fibre yarns for the development of high-performance natural fibre composites[J]. Advanced Composites Letters, 2003, 12(6): 237-241. |
[6] | LONG Y, ZHANG Z, FU K, et al. Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly (lactic) acid composites[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109389. |
[7] |
AZIM A Y M A, ALIMUZZAMAN S, SARKER F. Optimizing the fabric architecture and effect of γ-radiation on the mechanical properties of jute fiber reinforced polyester composites[J]. ACS Omega, 2022, 7(12): 10127-10136.
doi: 10.1021/acsomega.1c06241 pmid: 35382272 |
[8] | 夏治刚, 徐卫林, 叶汶祥. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6): 147-154. |
XIA Zhigang, XU Weilin, YE Wenxiang. Review of staple yarn spinning technology and analysis of its key features[J]. Journal of Textile Research, 2013, 34(6): 147-154. | |
[9] |
JIANG Z, YU C, YANG J, et al. Estimation of yarn strength based on critical slipping length and fiber length distribution[J]. Textile Research Journal, 2019, 89(2): 182-194.
doi: 10.1177/0040517517741160 |
[10] |
MA H, LI Y, SHEN Y, et al. Effect of linear density and yarn structure on the mechanical properties of ramie fiber yarn reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 98-108.
doi: 10.1016/j.compositesa.2016.04.012 |
[11] |
HENGSTERMANN M, HASAN M M B, ABDKADER A, et al. Development of a new hybrid yarn construction from recycled carbon fibers (rCF) for high-performance composites: Part-II: influence of yarn parameters on tensile properties of composites[J]. Textile Research Journal, 2017, 87(13): 1655-1664.
doi: 10.1177/0040517516658511 |
[12] |
MA H, LI Y, WANG D. Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(7): 687-696.
doi: 10.1177/0731684413520187 |
[13] |
OMRANI F, WANG P, SOULAT D, et al. Mechanical properties of flax-fibre-reinforced preforms and composites: influence of the type of yarns on multi-scale characterisations[J]. Composites Part A: Applied Science and Manufacturing, 2017, 93: 72-81.
doi: 10.1016/j.compositesa.2016.11.013 |
[14] | YU X, FAN W, AZWAR E, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.128446. |
[15] |
ZAIDI B M, ZHANG J, MAGNIEZ K, et al. Optimizing twisted yarn structure for natural fiber-reinforced polymeric composites[J]. Journal of Composite Materials, 2018, 52(3): 373-381.
doi: 10.1177/0021998317707333 |
[16] | ZUO Q, SALLEH K M, WANG C, et al. Prediction and analysis of properties of ramie fiber staple yarn reinforced unsaturated polyester composite based on fiber packing density[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.109869. |
[17] | 何梅洪, 杨涛, 张斌, 等. 复合材料超声检测复合缺陷多层成像实验分析[J]. 宇航材料工艺, 2015, 45(5): 80-84. |
HE Meihong, YANG Tao, ZHANG Bin, et al. Experiment analysis of multi imaging by ultrasonic testing of complex defects in composite material[J]. Aerospace Materials & Technology, 2015, 45(5): 80-84. | |
[18] | 敖利民, 唐雯, 王爱林. 亚麻/有色涤纶长丝包缠复合纱的外观与性能[J]. 纺织学报, 2019, 40(8): 40-47. |
AO Limin, TANG Wen, WANG Ailin. Appearance and performance of linen/colored polyester wrapping composite yarn[J]. Journal of Textile Research, 2019, 40(8): 40-47. |
[1] | 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195. |
[2] | 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242. |
[3] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
[4] | 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107. |
[5] | 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56. |
[6] | 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125. |
[7] | 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131. |
[8] | 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206. |
[9] | 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213. |
[10] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27. |
[11] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
[12] | 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69. |
[13] | 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59. |
[14] | 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78. |
[15] | 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87. |
|