纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 90-97.doi: 10.13475/j.fzxb.20221000801

• 染整与化学品 • 上一篇    下一篇

基于概率密度函数的织物染色侵入动力学分析

姜绍华1,2, 梁帅童1,2(), 裴刘军1,2, 张红娟1,2, 王际平1,2   

  1. 1.上海工程技术大学 纺织服装学院, 上海 201620
    2.上海市纺织化学清洁生产工程技术研究中心, 上海 201620
  • 收稿日期:2022-10-08 修回日期:2023-07-07 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 梁帅童(1987—),男,讲师,博士。主要研究方向为纤维多孔材料内部流动。E-mail:liangst@sues.edu.cn
  • 作者简介:姜绍华(1996—),男,硕士生。主要研究方向为纤维多孔材料内部流动。
  • 基金资助:
    国家自然科学基金项目(22108169);国家自然科学基金项目(22072089);上海市青年科技英才扬帆计划(21YF1416000);新疆生产建设兵团重点研发计划项目(2019AA001)

Analysis of fabric dyeing intrusion kinetics based on probability density function

JIANG Shaohua1,2, LIANG Shuaitong1,2(), PEI Liujun1,2, ZHANG Hongjuan1,2, WANG Jiping1,2   

  1. 1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Shanghai Engineering Research Center of Textile Chemistry and Clean Production, Shanghai 201620, China
  • Received:2022-10-08 Revised:2023-07-07 Published:2023-10-15 Online:2023-12-07

摘要:

为预测染色过程中初始阶段染液侵入织物的流体流动和化学反应过程,以棉织物染色过程为例,建立了包含界面效应的纤维密度函数和哈根-泊肃叶方程,构建了织物润湿阶段的染色动力学和传质模型,模拟了染液侵入织物的染色过程,并通过实验进行了模型验证。结果表明:染液在织物中的流动主要是表面张力的作用,在重力的影响下,染液在织物中的流速随着上升高度逐渐减小,表面张力增大,织物内染液流速也会随之增大;纤维体积分数的增大会导致织物的毛细流动更快地达到平衡状态,从而使染液的扩散时间变短,织物染液浓度降低;染液与纤维之间接触角的变化会影响纤维的润湿性,接触角越大,织物的疏水性越好,染液越难以附着在织物表面,导致织物内染液浓度降低;流体的黏度越大,织物内染液流速越小,染液扩散速率越低。

关键词: 染色, 染料浓度, 概率密度函数, 毛细流动, 织物结构, 染色动力学

Abstract:

Objective Dyeing is a very complex process with many variables in which different phenomena occur simultaneously. In order to further understand the fluid flow and chemical reaction process of dye solution infiltrating into fabrics during the initial stage of dyeing, and to study the effects of physical properties of fabric and dye solution on fluid flow and dye concentration during the dyeing process, a relevant mathematical model has been developed and experimentally validated to ensure its accuracy.

Method The fiber orientation probability density function was established as a mathematical model for the inter-fiber capillary radius. The Stokes-Einstein equation defined the effective diffusion rate of dye molecules in the fluid. By deriving a kinetic model for fluid flow and material exchange in the fabric by combining the Hagen-Poiseuille equation, the mathematical and kinetic models were validated by dyeing cotton fabric samples in a Reactive Red 195 dye solution at a concentration of 0.03 g/L, a temperature of 40 ℃, and a dyeing time of 15 minutes.

Results The actual flow rate of the dyeing solution flow in the fabric was measured by percolation dyeing experiments to verify the accuracy of the capillary flow model constructed. Comparison between the flow rate predicted by equation with the actual flow rate revealed that the predicted flow rate and the actual flow rate were basically matched. Datacolor 800 spectrophotometer was used to measure the K/S values of the sample fabrics at the end of the dyeing experiment. The K/S values were normalized the predicted concentrations for comparison. The results showed that the predicted concentrations were in general agreement with the actual concentrations. These results validated the model used in this work, breaking down the critical phenomena and stages of the dyeing process, such as diffusion and adsorption. The numerical simulation results showed that as the fiber volume fraction increases, the capillary flow rate within the fabric decreases and the rise height of the dyeing solution decreases when equilibrium was reached(Fig. 3). Moreover, under these conditions, the dye concentration within the fabric reached a steady state much more quickly (Fig. 4). Contact angle analysis revealed that the size of the contact angle had minimal impact on the capillary flow rate but primarily affected the material exchange rate within the fabric (Fig. 5). However, if the contact angle exceeds π/2, there is no capillary effect in the fabric. A reduction in contact angle resulted in a slower material exchange rate, thus delaying the dyeing process. Conversely, an increase in surface tension would increase the flow rate within the fabric, but it would decrease the penetration height and dye concentration at the same location upon reaching equilibrium (Fig. 7 and Fig. 8). It was discovered that viscosity of the dyeing solution plays a critical role in determining equilibrium between permeation process and dyeing process within fabric. When viscosity is low, the permeation process and dyeing process could easily achieve equilibrium (Fig. 9 and Fig. 10).

Conclusion A scientific and effective method for describing the fluid flow and chemical reaction process of dye solution infiltrating into fabrics during the initial stage of dyeing is explored. The simulation results generated by this flow model provided valuable information regarding the velocity and concentration distribution of capillary flow within the fabric. These results were validated through experimental validation. The kinetic model enables the rapid assessment of how variables such as porosity, contact angle, surface tension, and viscosity influence the dyeing process and its outcomes. The numerical simulation results showed that the fiber volume fraction has the greatest influence on the whole dyeing process. This method can also be applied to the description and analysis of the dyeing process and results for different fabrics, fluids, and dyes, researchers can effectively regulate and optimize the entire dyeing process and its results for specific applications.

Key words: dyeing, dye concentration, probability density function, capillary flow, fabric structure, dyeing kinetic

中图分类号: 

  • TS101.3

表1

模型误差"

时间/s 染液流动距离/mm 相对误差/%
实验值 预测值
180 26.67 26.71 0.15
360 34.10 32.93 3.43
540 38.33 37.12 3.16
720 40.90 40.34 1.37
900 43.71 42.98 1.67

图1

预测值与实验结果对比"

图2

不同时刻下织物不同位置的染料质量浓度分布"

图3

纤维体积分数 V ^ f b对v(x,t)的影响"

图4

纤维体积分数 V ^ f b对c(x,t)的影响"

图5

接触角θ对v(x,t)的影响"

图6

接触角θ对c(x,t)的影响"

图7

表面张力γ对v(x,t)的影响"

图8

表面张力γ对c(x,t)的影响"

图9

黏度μ对c(x,t)的影响"

图10

黏度μ对v(x,t)的影响"

[1] 赵涛. 染整工艺学教程 (第二分册)[M]. 北京: 中国纺织出版社, 2005: 16-19.
ZHAO Tao. Dyeing and finishing technology course (Part II)[M]. Beijing: China Textile & Apparel Press, 2005: 16-19.
[2] 裴刘军, 刘今强, 王际平. 活性染料非水介质染色的技术发展和应用前景[J]. 纺织导报, 2021(5): 32-40.
PEI Liujun, LIU Jinqiang, WANG Jiping. Technology development and application prospect of non-aqueous medium dyeing with reactive dyes[J]. China Textile Leader, 2021(5): 32-40.
[3] 裴刘军, 施文华, 张红娟, 等. 非水介质活性染料染色关键技术体系及其产业化研究进展[J]. 纺织学报, 2022, 43(1): 122-130.
PEI Liujun, SHI Wenhua, ZHANG Hongjuan, et al. Technology progress and application prospect of non-aqueous medium dyeing systems[J]. Journal of Textile Research, 2022, 43(1): 122-130.
[4] 邵敏, 王丽君, 李美琪, 等. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
SHAO min, WANG Lijun, LI Meiqi, et al. Hydrolysis and bonding properties of reactive dyes in non-aqueous medium with minimal water systems[J]. Journal of Textile Research, 2022, 43(11): 94-103.
[5] LIANG S, ZHANG H, WANG J. Capillary flow in cotton fabric based on fiber orientation probability density function[J]. Journal of Natural Fibers, 2022, 19(14): 8750-8764.
doi: 10.1080/15440478.2021.1967829
[6] AMBEKAR A S, BUWA V V, PHIRANI J. Interface dynamics during two phase flow in stratified porous medium[C]// International Conference on Nanochannels, Microchannels, and Minichan-nels. [S.l.]: American Society of Mechanical Engineers, 2018: 7738-7746.
[7] NAYAK A K, PAL A. Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function[J]. Journal of Molecular Liquids, 2019, 276: 67-77.
doi: 10.1016/j.molliq.2018.11.089
[8] MAGUANA Y E, ELHADIRI N, BENCHANAA M, et al. Activated carbon for dyes removal: modeling and understanding the adsorption process[J]. Journal of Chemistry, 2020, 2020: 1-9.
[9] TRABI C L, OUALI F F, MCHALE G, et al. Capillary penetration into inclined circular glass tubes[J]. Langmuir, 2016, 32: 1289-1298.
doi: 10.1021/acs.langmuir.5b03904 pmid: 26738739
[10] KAMEDA A, DVORKIN J, KEEHM Y, et al. Permeability-porosity transforms from small sandstone fragments[J]. Geophysics, 2006. DOI: 10.1190/1.2159054.
[11] LI M, JIAN Z, HASSANPOURYOUZBAND A, et al. Understanding hysteresis and gas trapping in dissociating hydrate-bearing sediments using pore network modeling and three-dimensional imaging[J]. Energy Fuels, 2022, 36(18): 10572-10582.
doi: 10.1021/acs.energyfuels.2c01306
[12] TAMAYOL A, BAHRAMI M. Transverse permeability of fibrous porous media[J]. Physical Review E, 2011.DOI: 10.1103/physRevE8.046314.
[13] WANG M, NING P. Predictions of effective physical properties of complex multiphase materials[J]. Materials Science & Engineering Reports, 2009, 63(6): 1-30.
[14] PAN N, GIBSON P, MANCHESTER E T I. Thermal and moisture transport in fibrous materials[M]. Cambridge: Woodhead Publishing Limited, 2006: 127-130.
[15] LIANG S, PAN N, CUI Y, et al. Steam impinging and heat and water spreading in fabrics[J]. Textile Research Journal, 2018, 89(4), 1455-1471.
doi: 10.1177/0040517518773373
[16] PAN N. Analytical characterization of the anisotropy and local heterogeneity of short fiber composites: fiber fraction as a variable[J]. Journal of Composite Materials, 1994, 28(16): 1500-1531.
doi: 10.1177/002199839402801601
[17] LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid Zeitschrift, 1918, 23(15): 15-22.
doi: 10.1007/BF01461107
[18] MORTON W E, HEARLE J. Physical properties of textile fibres[M]. 4th ed. Cambridge: Woodhead Publishing Limited, 2008: 76-78.
[19] NIELD D A, BEJAN A. Convection in porous media[M]. New York: Springer, 2017: 59-61.
[20] BLACK A W, ZHANG W, REID G, et al. Diffusion in weakly coordinating solvents[J]. Electrochimica Acta, 2022. DOI: 10.1016/j.electacta.2022.140720.
[21] SPEIGHT J G. Environmental analysis and technology for the refining industry[M]. Hoboken: John Wiley & Sons, 2005: 47-51.
[22] GRUESBECK C, COLLINS R E. Entrainment and deposition of fine particles in porous media[J]. Society of Petroleum Engineers Journal, 1982, 22(6): 847-856.
doi: 10.2118/8430-PA
[23] KRETZSCHMAR R, BARMETTLER K, GROLIMUND D, et al. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media[J]. Water Resources Res, 1997, 33(5): 1129-1137.
doi: 10.1029/97WR00298
[24] YI L, LI F, ZHU Q. Numerical simulation of virus diffusion in facemask during breathing cycles[J]. International Journal of Heat & Mass Transfer, 2005, 48(19/20): 4229-4242.
[25] FRIES N, DREYER M. The transition from inertial to viscous flow in capillary rise[J]. Journal of Colloid & Interface Science, 2008, 327(1): 125-128.
[26] PEPPER D W, HEINRICH J C. The finite element method basic concepts and applications[M]. Boca Raton: CRC Press, 2017: 4-7.
[1] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[2] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[3] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[4] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[5] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[6] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[7] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[8] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[9] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[10] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[11] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[12] 贾维妮, 王涛, 鲍杰, 梁志结, 王海峰. 基于漆酶催化角蛋白头发纤维生物修复染色[J]. 纺织学报, 2023, 44(04): 108-114.
[13] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[14] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[15] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!