纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 132-141.doi: 10.13475/j.fzxb.20220709501

• 染整与化学品 • 上一篇    下一篇

全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化

刘骏韬1, 孙婷1,2, 涂虎1,3, 胡敏1,3, 张如全1,3(), 孙雷4, 罗霞4, 纪华2   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.稳健医疗(武汉)有限公司, 湖北 武汉 430415
    3.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    4.稳健医疗(黄冈)有限公司, 湖北 黄冈 438021
  • 收稿日期:2022-07-27 修回日期:2023-08-18 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 张如全(1966—),男,教授,博士。主要研究方向为智能纺织品和功能非织造材料。E-mail:zhangruquan@wtu.edu.cn
  • 作者简介:刘骏韬(1998—),男,硕士生。主要研究方向为产业用纺织品。
  • 基金资助:
    湖北省重点研发计划项目(2022BAD031)

Optimization of plasma cold pad-batch degreasing/bleaching process for cotton spunlace nonwoven by response surface method

LIU Juntao1, SUN Ting1,2, TU Hu1,3, HU Min1,3, ZHANG Ruquan1,3(), SUN Lei4, LUO Xia4, JI Hua2   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Winner Medical (Wuhan) Co., Ltd., Wuhan, Hubei 430415, China
    3. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    4. Winner Medical (Huanggang) Co., Ltd., Huanggang, Hubei 438021, China
  • Received:2022-07-27 Revised:2023-08-18 Published:2023-11-15 Online:2023-12-25

摘要:

为解决全棉水刺非织造布冷堆脱脂漂白处理时间长的问题,采用等离子体冷堆脱脂漂白工艺对其进行处理,借助扫描电子显微镜和红外光谱仪分析材料的微观形貌和化学结构,设计单因素实验探究等离子体处理功率、等离子体处理时间、冷堆时间对材料白度、断裂强力、吸水率的影响,并在此基础上设计响应面法优化实验,确定最佳工艺参数。结果表明:等离子体处理可去除非织造布表面棉籽壳等异物杂质并在布面留下孔洞,经冷堆处理后孔洞得到一定消除;等离子体处理可减少棉纤维表面脂类物质,增加羟基含量,提高棉纤维的亲水性;经响应面法优化后得到最佳优化工艺条件为等离子体处理功率2 kW、等离子体处理时间11 s、冷堆时间6.5 h,经过此条件处理的全棉水刺非织造布的白度可达到75.883 6%。

关键词: 响应面法, 等离子体技术, 冷堆, 全棉水刺非织造布, 脱脂漂白工艺, 水刺法加固

Abstract:

Objective Cotton fiber is a natural cellulose fiber with a wide range of applications. Cotton spunlace nonwovens as a cotton fiber product are widely used in medical textile and personal protection. However, for degreasing and bleaching of cotton spunlace nonwovens, the conventional cold pad-batch process faces the problems of long processing time and low production efficiency. Therefore, novel technologies need to be developed to reduce cold pad-batch time and improve production efficiency.

Method The cotton spunlace nonwovens were plasma treated using PG-10000F plasma equipment, and the treatment solution prepared from 4 g/L NaOH, 6 g/L H2O2, 2 g/L tetraacetylethylenediamine(TAED), and 2 g/L fatty alcohol polyoxyethylene ether was stirred evenly by magnetic stirring. After plasma treatment, the cotton spunlace nonwoven was immediately put into a self-sealing bag containing hydrogen peroxide activation solution with a bath ratio of 1∶20, then reacted within a certain time from 0 to 24 h at 30 ℃. The cotton spunlace nonwoven was then soaked in warm water at 60 ℃, and washed with water twice for removing impurities. Finally, the degreased/bleached cotton nonwoven fabric was obtained after drying in an oven at 40 ℃ for 4 h.

Results The pores formed by plasma treatment were properly eliminated in the bleaching process (Fig. 3). Plasma treatment and hydrogen peroxide activation treatment were adopted to smooth the fiber surface (Fig. 4), while the plasma treatment removed lipid substances from the surface of cotton fibers and improve the hydrophilicity of cotton fibers (Fig. 5). Plasma treatment time and cold pad-batch time were unchanged for all samples, and the material whiteness was the highest when the plasma treatment power was at 2 kW (Fig. 6(a)) and the plasma treatment time was 10 s (Fig. 6(b)). Plasma treatment power and plasma treatment time remained unchanged, and there was no significant change in whiteness after 6 h of cold pad-batch time (Fig. 6(c)). As the plasma treatment power increased, the water absorption showed an upward trend, and gradually flattened after the power reached 2 kW (Fig. 7(a)). The plasma treatment time had little influence on the water absorption of the material (Fig. 7(b)). The water absorption showed an upward trend with the increased cold pad-batch time, and the first 2 h increased the fastest (Fig. 7(c)). The plasma treatment power displayed no significant influence on the material strength (Fig. 8(a)). With the prolongation of plasma treatment time, the strength showed a decreasing trend, and had no significant change after 15 s (Fig. 8(b)). With the prolongation of cold pad-batch time, the material strength decreased rapidly within 4 h, and then gradually flattened (Fig. 8(c)). According to response surface analysis, plasma treatment power and plasma treatment time showed no significant influence on the whiteness of cotton spunlace nonwovens (Fig. 9). The cold pad-batch time had the greatest influence on the whiteness of nonwovens, and the whiteness increased rapidly at first and then decreased slowly with the increase of the cold pad-batch time (Fig. 10). The whiteness increases first and then decreased with the plasma treatment time, and the increased and decreased proportion of whiteness was almost the same (Fig. 11). When the whiteness of the response value was set to the maximum (76%), the optimal condition from the response surface optimization implied the plasma treatment power was 1.828 kW, and the plasma treatment time was 10.804 s. When the cold reactor time was 6.454 h, the whiteness was 75.872%, R2=0.923 5, indicating an accurate model.

Conclusion In summary, plasma treatment could moderately remove the cotton seed shell and other foreign impurities on the surface of cotton spunlace grey nonwoven fabrics. At the same time, lipid substances were removed from the surface of cotton fiber after plasma treatment, the number of hydrophilic groups such as hydroxyl increased, and the water absorption of cotton spunlace nonwovens were improved. Plasma treatment could promote the degreasing and bleaching process. Although the plasma cold pad-batch treatment process could hardly increase the treated cotton spunlace nonwovens whiteness, the cold pad-batch time were shorted from 8 h to 6.5 h compared with the conventional cold pad-batch process, which could improve the production efficiency.

Key words: response surface method, plasma technology, cold pad-batch, cotton spunlace nonwoven, degreasing and bleaching process, spun reinforcement

中图分类号: 

  • TS174.8

图1

等离子体冷堆工艺示意图"

图2

等离子体冷堆法全棉水刺非织造布的工艺流程"

图3

全棉水刺非织造布的显微镜照片"

图4

全棉水刺非织造布单根纤维的SEM照片"

图5

不同处理工艺下的全棉水刺非织造布的红外光谱图"

图6

各因素对全棉水刺非织造布白度的影响"

图7

各因素对全棉水刺非织造布吸水率的影响"

图8

各因素对全棉水刺非织造布断裂强力及断裂伸长率的影响"

表1

等离子体冷堆法因素和水平设计表"

水平 等离子体处理
功率/kW
等离子体处理
时间/s
冷堆
时间/h
-1 1 5 4
0 2 10 6
1 3 15 8

表2

等离子体冷堆法响应面优化实验方案及结果"

实验
编号
等离子体
处理功率/
kW
等离子体
处理时间/
s
冷堆
时间/h
白度/
%
1 3 10 4 72.726
2 2 10 6 75.615
3 1 5 6 75.020
4 2 10 6 75.850
5 2 10 6 75.925
6 3 10 8 74.274
7 2 15 8 74.610
8 2 10 6 75.760
9 2 15 4 73.075
10 3 15 6 75.064
11 2 10 6 75.690
12 3 5 6 75.047
13 1 10 8 74.589
14 2 5 8 74.630
15 1 10 4 73.037
16 1 15 6 75.442
17 2 5 4 73.019

表3

等离子体冷堆法响应面回归方程方差分析表"

方差来源 平方和SS 自由度DF 均方MS F P 显著性
模型 18.90 9 2.100 161.61 < 0.000 1 显著
等离子体处理功率A 0.119 3 1 0.119 3 9.180 0.019 1
等离子体处理时间B 0.028 2 1 0.028 2 2.17 0.184 2
冷堆时间C 4.880 1 4.880 375.33 < 0.000 1
AB 0.041 0 1 0.041 0 3.16 0.118 9
AC 4×10-6 1 4×10-6 0.000 3 0.986 5
BC 0.001 4 1 0.001 4 0.111 1 0.748 6
A2 0.676 6 1 0.676 6 52.08 0.000 2
B2 0.211 0 1 0.211 0 16.24 0.005 0
C2 12.320 1 12.320 948.30 < 0.000 1
残差 0.090 9 7 0.013 0
失拟项 0.030 0 3 0.010 0 0.656 9 0.619 8 不显著
纯误差 0.060 9 4 0.015 2
总和 18.990 16
变异系数/% 0.152 7

图9

等离子体处理功率和处理时间对白度影响的曲面图"

图10

等离子体处理功率与冷堆时间对白度影响的曲面图"

图11

等离子体处理时间与冷堆时间对白度影响的曲面图"

[1] 连素梅, 叶曦雯, 罗忻, 等. 棉纤维结构与理化性能关系分析[J]. 棉花科学, 2018, 40(1): 48-52.
LIAN Sumei, YE Xiwen, LUO Xin, et al. Analysis of relationship between cotton fiber structure and physical and chemical properties[J]. Cotton Science, 2018, 40(1): 48-52.
[2] 蒋佩林, 俞晶颖, 金平良, 等. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
JIANG Peilin, YU Jingying, JIN Pingliang, et al. Effect of bleaching process on properties of medical spunlaced cotton nonwovens[J]. Journal of Textile Research, 2017, 38(10): 88-93.
[3] 渠少波, 寇笃敬, 文卓, 等. 棉针织物低温前处理工艺的研究[J]. 染整技术, 2019, 41(9): 42-44.
QU Shaobo, KOU Dujing, WEN Zhuo, et al. Study on low temperature pretreatment technology of cotton knitted fabric[J]. Dyeing and Finishing Technology, 2019, 41(9):42-44.
[4] 陆彪, 章小勇, 顾海. 棉针织物短流程前处理助剂配制及工艺探讨[J]. 针织工业, 2019 (10): 28-33.
LU Biao, ZHANG Xiaoyong, GU Hai. Preparation and used conditions of additives for short process pretreatment of cotton knitted fabric[J]. Knitting Industries, 2019 (10): 28-33.
[5] 陈艳辉. 棉针织物冷轧堆前处理和增白全流程工艺的研究[D]. 上海: 东华大学, 2017:6-7.
CHEN Yanhui. Cold pad-batch pretreatment and whitening whole process of cotton knitted fabrics[D]. Shanghai: Donghua University, 2017:6-7.
[6] 孙婷, 张如全, 唐子杰, 等. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(1): 89-95.
SUN Ting, ZHANG Ruquan, TANG Zijie, et al. Study on the low-carbon and energy-saving cold pad-batch bleaching treatment of cotton spunlaced nonwoven[J]. Journal of Textile Research, 2022, 43(1): 89-95.
[7] ZHOU L, BAI Y, ZHOU H, et al. Environmentally friendly textile production: continuous pretreatment of knitted cotton fabric with normal temperature plasma and padding[J]. Cellulose, 2019, 26(11): 6943-6958.
doi: 10.1007/s10570-019-02508-8
[8] YANG J, PU Y, HE H, et al. Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil-water separ-ation[J]. Cellulose, 2019, 26(12): 7507-7522.
doi: 10.1007/s10570-019-02590-y
[9] ULLAH M H, AKTHER H, RAHMAN M M, et al. Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma[J]. Heliyon, 2021. DOI:10.1016/j.heliyon.2021.e07893.
[10] 范小波, 齐宏进. 棉针织物常压空气等离子体前处理探讨[J]. 针织工业, 2010 (6): 43-46.
FAN Xiaobo, QI Hongjin. Discussion on atmospheric pressure air plasma pretreatment of cotton knitted fabrics[J]. Knitting Industries, 2010 (6): 43-46.
[11] 冯仑仑, 王雪燕, 庄小雄, 等. 棉织物的等离子体前处理工艺研究[J]. 西安工程大学学报, 2010, 24(1): 17-20.
FENG Lunlun, WANG Xueyan, ZHUANG Xiaoxiong, et al. Research on plasma pretreatment process of cotton fabrics[J]. Journal of Xi'an Polytechnic University, 2010, 24(1): 17-20.
[12] JINKA S, TURAGA U, SINGH V, et al. Atmospheric plasma effect on cotton nonwovens[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12587-12593.
doi: 10.1021/ie502384g
[13] NITHYA E, RADHAI R, RAJENDRAN R, et al. Enhancement of the antimicrobial property of cotton fabric using plasma and enzyme pre-treatments[J]. Carbohydrate Polymers, 2012, 88(3): 986-991.
doi: 10.1016/j.carbpol.2012.01.049
[14] WANG X, ZHAO H, CHEN F, et al. The application of atmospheric plasma for cotton fabric desizing[J]. Fibers and Polymers, 2019, 20(11): 2334-2341.
doi: 10.1007/s12221-019-9330-0
[15] 张小云, 张新斌, 高秀红, 等. 等离子体处理对棉类针织物冷轧堆前处理的影响[J]. 印染, 2019, 45(18): 26-29.
ZHANG Xiaoyun, ZHANG Xinbin, GAO Xiuhong, et al. Effect of plasma treatment on cold pad-batch pretreatment of cotton knitted fabric[J]. China Dyeing & Finishing, 2019, 45(18): 26-29.
[16] LUO X, SUI X, YAO J, et al. Performance modelling of the TBCC-activated peroxide system for low-temperature bleaching of cotton using response surface method-ology[J]. Cellulose, 2015, 22(5): 3491-3499.
doi: 10.1007/s10570-015-0741-9
[17] KALANTZI S, KEKOS D, MAMMA D. Bioscouring of cotton fabrics by multienzyme combinations: application of Box-Behnken design and desirability function[J]. Cellulose, 2019, 26(4): 2771-2790.
doi: 10.1007/s10570-019-02272-9
[18] 解梓畅. 木质纤维素中木质素的常压等离子体预处理及作用机理研究[D]. 大连: 大连工业大学, 2015:55.
XIE Zichang. Pretreatment of lignin in the lignocellulose by atmospheric pressure plasma and investigation of its interaction mechanism[D]. Dalian: Dalian Polytechnic University, 2015:55.
[1] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[2] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[3] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[4] 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
[5] 程燕婷 孟家光 刘青. 碳纤维表面改性处理及其基本性能表征[J]. 纺织学报, 2016, 37(06): 22-26.
[6] 陈妙源 谷令彪 卢可可 孔令军 刘华敏 庞会利 祁鲲 朱新亮 秦广雍. 亚临界萃取羊毛脂工艺的响应面法优化[J]. 纺织学报, 2015, 36(12): 69-74.
[7] 宋叶萍;熊杰;谢军军;霍鹏飞;王永攀;孙芳. zein静电纺丝的过程优化和直径预测模型[J]. 纺织学报, 2009, 30(07): 6-9.
[8] 钟智丽;李辉芹. 高新技术在起绒织物开发中的应用前景[J]. 纺织学报, 2003, 24(01): 77-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!