纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 208-215.doi: 10.13475/j.fzxb.20220301801
雷钧杰1,2, 沈春娅1,2, 胡旭东1,2(), 汝欣1,2, 彭来湖1,2
LEI Junjie1,2, SHEN Chunya1,2, HU Xudong1,2(), RU Xin1,2, PENG Laihu1,2
摘要:
为解决遗传算法在织造车间大规模调度中容易陷入局部最优的问题,提出了NSGAII-NN125调度算法。首先,根据织造车间大规模调度的特点,以最小化逾期损失、完工时间和改车次数为优化目标,建立了织造车间调度模型。然后设计了以神经网络模型NN125为主体的调度模块,其可根据织轴和织机特征信息生成调度方案。最后,设计了以NSGAII为主体的优化模块,其根据方案优劣对调度模块中的NN125进行优化。结果表明:NSGAII-NN125的调度质量随着调度规模的不断增大始终非常稳定,而且已优化的调度模块可直接用于相似问题的调度,调度性能较好,由于省去了优化过程,调度速度(约50个织轴/s)也有较大提升,具有较好的实用价值。
中图分类号:
[1] | 程禹, 赵宏伟, 龙曼丽, 等. 最早截止期优先调度算法的改进[J]. 吉林大学学报(工学版), 2013, 43(5): 1338-1342. |
CHENG Yu, ZHAO Hongwei, LONG Manli, et al. Improvement for earliest deadline first algorithm[J]. Journal of Jilin University (Engineering Edition), 2013, 43(5): 1338-1342. | |
[2] |
KRITHI Ramamritham, JOHN A Stankovic, PERNG-FEI Shiah. Efficient scheduling algorithms for real-time multiprocessor systems[J]. IEEE Trans Parallel Distrib Syst, 1990, 1(2): 184-194.
doi: 10.1109/71.80146 |
[3] | 宾雪莲, 杨玉海, 金士尧. 一种基于分组与适当选取策略的实时多处理器系统的动态调度算法[J]. 计算机学报, 2006(1): 81-91. |
BIN Xuelian, YANG Yuhai, JIN Shiyao. A new dynamic scheduling algorithm for real-time multiprocessor systems based on grouping and properly choosing policies[J]. Chinese Journal of Computers, 2006(1): 81-91. | |
[4] | HE Wentao, MENG Shuo, WANG Jing'an, et al. Weaving scheduling based on an improved ant colony algorithm[J]. Textile Research Journal, 2021, 91(5/6):1-7. |
[5] | 黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度的遗传算法综述[J]. 计算机集成制造系统, 2022, 28(2): 536-551. |
HUANG Xuewen, CHEN Shaofen, ZHOU Tianyu, et al. Survey on genetic algorithms for solving flexible job-shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2022, 28(2): 536-551. | |
[6] |
顾文斌, 李育鑫, 钱煜晖, 等. 基于激素调节机制IPSO算法的相同并行机混合流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(10): 2858-2871.
doi: 10.13196/j.cims.2021.10.010 |
GU Wenbin, LI Yuxin, QIAN Yuhui, et al. Improved particle swarm optimization algorithm with hormone modulation mechanism for solving hybrid flow-shop scheduling problem with identical parallel machine[J]. Computer Integrated Manufacturing Systems, 2021, 27(10): 2858-2871. | |
[7] | 陈自豪, 陈松航, 陈豪. 多种群NSGA-II改进算法的大规模柔性作业车间调度问题[J]. 传感器与微系统, 2021, 40(2): 51-54. |
CHEN Zihao, CHEN Songhang, CHEN Hao. Large-scale FJSP based on improved multi-group NSGA-II algorithm[J]. Transducer and Microsystem Technologies, 2021, 40(2): 51-54. | |
[8] | 宋存利. 求解多目标混合流水车间调度的改进NSGAII算法[J/OL]. 计算机集成制造系统: 1-19.[2022-04-19]. http://kns.cnki.net/kcms/detail/11.5946.tp.20201026.1044.022.html. |
SONG Cunli. An improved NSGAII algorithm for hybrid flow shop scheduling problem with multi-objec-tive[J/OL]. Computer Integrated Manufacturing Systems: 1-19.[2022-04-19]. http://kns.cnki.net/kcms/detail/11.5946.tp.20201026.1044.022.html. | |
[9] | 陈革, 杨建成. 纺织机械概论[M]. 北京: 中国纺织出版社, 2011: 80-82. |
CHEN Ge, YANG Jiancheng. Introduction to texile machinery[M]. Beijing: China Textile & Apparel Press, 2011: 80-82. | |
[10] | 沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4):74-83. |
SHEN Chenya, LEI Junjie, RU Xin, et al. Multi-objective large-scale dynamic scheduling for weaving workshop based on improved NSGAII[J]. Journal of Textile Research, 2022, 43(4):74-83.
doi: 10.1177/004051757304300203 |
|
[11] | 雷钧杰. 织造车间智能调度算法研究[D]. 杭州: 浙江理工大学, 2022:2-50. |
LEI Junjie. Research on intelligent scheduling algorithm for weaving workshop[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:2-50. | |
[12] | 周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版, 1999: 15-16. |
ZHOU Ming, SUN Shudong. Genetic algorithms: theory and application[M]. Beijing: National Defense Industry Press, 1999: 15-16. | |
[13] |
KALYANMOY Deb, SAMIR Agrawal, AMRIT Pratap, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans Evolutionary Computation, 2002, 6(2): 182-197.
doi: 10.1109/4235.996017 |
[14] | SAMEER Agarwal, KALYANMOY Deb. Simulated binary crossover for continuous search space[J]. Complex Systems, 2000, 9(3): 115-148. |
[15] | KALYANMOY Deb, MAYANK Goyal. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1999, 26(4): 30-45. |
[1] | 任国栋, 屠佳佳, 李杨, 邱子安, 史伟民. 基于轻量化网络和知识蒸馏的纱线状态检测[J]. 纺织学报, 2023, 44(09): 205-212. |
[2] | 姚琳涵, 张颖, 姚岚, 郑晓萍, 魏文达, 刘成霞. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(09): 84-90. |
[3] | 付晗, 胡峰, 龚杰, 余联庆. 面向织物疵点检测的缺陷重构方法[J]. 纺织学报, 2023, 44(07): 103-109. |
[4] | 李学良, 杜玉红, 任维佳, 左恒力. 基于近红外光谱和残差神经网络的异性纤维分类识别[J]. 纺织学报, 2023, 44(05): 84-92. |
[5] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[6] | 张福沐, 刘端武, 胡跃明. 染色机助剂智能配送系统的构建及实践[J]. 纺织学报, 2022, 43(11): 179-187. |
[7] | 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48. |
[8] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[9] | 沈春娅, 雷钧杰, 汝欣, 彭来湖, 胡旭东. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(04): 74-83. |
[10] | 夏明, 李沛儒, 丁蓉. 基于要素匹配的连衣裙成本快速核算方法[J]. 纺织学报, 2022, 43(03): 146-152. |
[11] | 江学为, 田润雨, 卢方骁, 张艺. 基于模拟评分的服装推荐改进算法[J]. 纺织学报, 2021, 42(12): 138-144. |
[12] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[13] | 庹武, 王哓玉, 高雅昆, 于媛媛, 郝潇潇, 刘永亮, 郭鑫. 基于改进边缘检测算法的服装款式识别[J]. 纺织学报, 2021, 42(10): 157-162. |
[14] | 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128. |
[15] | 周亚勤, 王攀, 张朋, 张洁. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(04): 170-176. |
|