纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 216-224.doi: 10.13475/j.fzxb.20220505402
徐志豪1,2, 徐丹瑶1,2, 李彦1,2(), 王璐1,2
XU Zhihao1,2, XU Danyao1,2, LI Yan1,2(), WANG Lu1,2
摘要:
为促进纳米纤维基表面增强拉曼光谱(SERS)传感器在生物医用领域的开发及应用,介绍了纳米纤维基SERS基底的组成与性能评价指标,纳米纤维基底的构建方法及其性能影响因素。通过总结纳米纤维基SERS基底的构建方法,阐述了纳米纤维与等离子体材料原位组装和后组装的2种策略,进一步探究了纳米纤维种类及其形貌等对柔性SERS传感性能的影响机制。最后展示了纳米纤维基SERS基底在生物医用领域的应用,根据生物医用领域SERS传感器的性能要求对其未来发展趋势进行展望,以期为制备高性能的纳米纤维基柔性SERS基底及拓宽其实际应用提供一定参考。
中图分类号:
[1] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver elec-trode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
doi: 10.1016/0009-2614(74)85388-1 |
[2] |
JEANMAIRE D L, VAN Duyne R P. Surface Raman spectroelectrochemistry: part I: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.
doi: 10.1016/S0022-0728(77)80224-6 |
[3] |
ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver elec-trode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.
doi: 10.1021/ja00457a071 |
[4] | 邸志刚, 杨健倓, 王彪, 等. 表面增强拉曼散射及其应用进展[J]. 激光杂志, 2020, 41(4): 1-7. |
DI Zhigang, YANG Jiantan, WANG Biao, et al. Surface enhanced Raman scattering and its application progress[J]. Laser Journal, 2020, 41(4): 1-7. | |
[5] | 陈瑞鹏, 孙云凤, 霍冰洋, 等. 表面增强拉曼光谱技术在食品安全检测的应用[J]. 解放军预防医学杂志, 2020, 38(9): 146-149. |
CHEN Ruipeng, SUN Yunfeng, HUO Bingyang, et al. Application of surface enhanced Raman spectroscopy in food safety detection[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2020, 38(9): 146-149. | |
[6] | 姜交来, 王少飞, 张靖, 等. 自组装金纳米粒子及其SERS应用[J]. 材料导报, 2016, 30(4): 77-80. |
JIANG Jiaolai, WANG Shaofei, ZHANG Jing, et al. Self-assembly of gold nanoparticles and their application in SERS[J]. Materials Review, 2016, 30(4): 77-80. | |
[7] | 张紫瑞, 汪燕青, 马自明, 等. 基于快速退火制备纳米金SERS基底的罗丹明B和罗丹明6G痕量检测[J]. 宁夏大学学报(自然科学版), 2021, 42(4): 408-411. |
ZHANG Zirui, WANG Yanqing, MA Ziming, et al. Trace detection of Rhodamine B and Rhodamine 6G based on nanogold SERS substrate prepared by rapid annealing[J]. Journal of Ningxia University(Natural Science Edition), 2021, 42(4): 408-411. | |
[8] |
裴君妍, 徐宗伟, 王钢, 等. Au@PS阵列SERS基底的特性研究[J]. 光散射学报, 2020, 32(3): 217-223.
doi: 10.13883/j.issn1004-5929.202003004 |
PEI Junyan, XU Zongwei, WANG Gang, et al. Study on SERS substrate properties of Au@PS arrays[J]. The Journal of Light Scattering, 2020, 32(3): 217-223.
doi: 10.13883/j.issn1004-5929.202003004 |
|
[9] |
LIOU P, NAYIGIZIKI F X, KONG F B, et al. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples[J]. Carbohydrate Polymers, 2017, 157: 643-650.
doi: S0144-8617(16)31191-2 pmid: 27987973 |
[10] |
WANG C, LIU B, DOU X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges[J]. Sensors and Actuators B: Chemical, 2016, 231: 357-364.
doi: 10.1016/j.snb.2016.03.030 |
[11] | 陈思远, 杨苗, 刘晓云, 等. 载Au@Ag核壳复合双金属纳米棒的复合滤纸用作SERS基底[J]. 光谱学与光谱分析, 2018, 38(6): 1747-1752. |
CHEN Siyuan, YANG Miao, LIU Xiaoyun, et al. Study on Au@Ag core-shell composite bimetallic nanorods laoding filter paper as SERS substrate[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1747-1752. | |
[12] |
FORTUNI B, INOSE T, UEZONO S, et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates[J]. Chemical Communications, 2017, 53(82): 11298-11301.
doi: 10.1039/c7cc05420c pmid: 28920592 |
[13] | 薛长国, 唐毓, 李世琴, 等. 基于可调控咖啡环效应的表面增强拉曼光谱法检测有机染料[J]. 分析化学, 2021, 49(1): 151-158. |
XUE Changguo, TANG Yu, LI Shiqin, et al. Surface enhanced Raman spectroscopy for detection of organic dyes based on adjustable coffee ring effect[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 151-158. | |
[14] | 吴焕乐, 唐建设, 方娟, 等. PDMS-Ag基底表面增强拉曼光谱技术快速检测鱼肉中孔雀石绿[J]. 分析试验室, 2019, 38(2): 147-151. |
WU Huanle, TANG Jianshe, FANG Juan, et al. Rapid detection of malachite green in fish by PDMS-Ag surface enhanced Raman spectroscopy[J]. Chinese Journal of Analysis Laboratory, 2019, 38(2): 147-151. | |
[15] |
YADAV S, SATIJA J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications[J]. Journal of Materials Chemistry B, 2021, 9(2): 267-282.
doi: 10.1039/d0tb02137g pmid: 33241248 |
[16] |
LI Y, LU R, SHEN J Y, et al. Electrospun flexible poly/(bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection[J]. Analyst, 2017, 142(24): 4756-4764.
doi: 10.1039/C7AN01639E |
[17] | SEVERYUKHINA A N, PARAKHONSKIY B V, PRIKHOZHDENKO E S, et al. Nanoplasmonic chitosan nanofibers as effective sers substrate for detection of small molecules[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15466-15473. |
[18] |
ZHANG C L, LÜ K P, CONG H P, et al. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electros-pinning[J]. Small, 2012, 8(5): 648-653.
doi: 10.1002/smll.v8.5 |
[19] | LIU Z C, YAN Z D, GUO J, et al. Palladium nanocubes assembled electrospun nanofiber membrane: facile preparation and catalytic properties[J]. Macromolecular Materials and Engineering, 2017. DOI: 10.1002/mame.201600432. |
[20] |
CHEN S L, DING C, LIN Y, et al. SERS-active substrate assembled by Ag NW-embedded porous polystyrene fibers[J]. RSC Advances, 2020, 10(37): 21845-21851.
doi: 10.1039/d0ra01454k pmid: 35516612 |
[21] |
ZHANG C L, YU S H. Nanoparticles meet electrospinning: recent advances and future prospects[J]. Chemical Society Reviews, 2014, 43(13): 4423-4448.
doi: 10.1039/c3cs60426h |
[22] |
BELL S E J, CHARRON G, CORTÉS E, et al. Towards reliable and quantitative surface-enhanced raman scattering (SERS): from key parameters to good analytical practice[J]. Angewandte Chemie International Edition, 2020, 59(14): 5454-5462.
doi: 10.1002/anie.v59.14 |
[23] |
PÉREZ-JIMÉNEZ A I, LYU D, LU Z, et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments[J]. Chemical Science, 2020, 11(18): 4563-4577.
doi: 10.1039/D0SC00809E |
[24] |
HE D, HU B, YAO Q F, et al. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles[J]. ACS Nano, 2009, 3(12): 3993-4002.
doi: 10.1021/nn900812f pmid: 19928883 |
[25] |
SHI J, YOU T, GAO Y, et al. Large-scale preparation of flexible and reusable surface-enhanced Raman scattering platform based on electrospinning AgNPs/PCL nanofiber membrane[J]. RSC Advances, 2017, 7(75): 47373-47379.
doi: 10.1039/C7RA09726C |
[26] | CAO M H, CHENG S, ZHOU X Z, et al. Preparation and surface-enhanced Raman performance of electrospun poly(vinyl alcohol)/high-concentration-gold nano-fibers[J]. Journal of Polymer Research, 2012. DOI: 10.1007/s10965-011-9810-4. |
[27] | KARAGOZ S, KIREMITLER N B, SAKIR M, et al. Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications[J]. Ecotoxicol Environ Saf, 2020. DOI: 10.1016/j.ecoenv.2019.109856. |
[28] |
BAI L, JIA L, YAN Z, et al. Plasma-assisted fabrication of nanoparticle-decorated electrospun nanofibers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 360-366.
doi: 10.1016/j.jtice.2017.11.022 |
[29] |
CHAMUAH N, BHUYAN N, DAS P P, et al. Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides[J]. Sensors and Actuators B: Chemical, 2018, 273: 710-717.
doi: 10.1016/j.snb.2018.06.079 |
[30] |
LIU Z C, YAN Z D, JIA L, et al. Gold nanoparticle decorated electrospun nanofibers: a 3D reproducible and sensitive SERS substrate[J]. Applied Surface Science, 2017, 403: 29-34.
doi: 10.1016/j.apsusc.2017.01.157 |
[31] |
AMARJARGAL A, TIJING L D, SHON H K, et al. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: flexible and high efficiency substrates for surface enhanced Raman scattering[J]. Applied Surface Science, 2014, 308: 396-401.
doi: 10.1016/j.apsusc.2014.04.188 |
[32] | KONG L, DONG N, TIAN G, et al. Highly enhanced Raman scattering with good reproducibility observed on a flexible PI nanofabric substrate decorated by silver nanoparticles with controlled size[J]. Applied Surface Science, 2020. DOI: 10.1016/j.apsusc.2020.145443. |
[33] | SHAO F, CAO J, YING Y, et al. Preparation of hydrophobic film by electrospinning for rapid SERS detection of trace triazophos[J]. Sensors, 2020. DOI: 10.3390/s20154120. |
[34] | SHAO J D, TONG L P, TANG S Y, et al. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5391-5399. |
[35] |
WANG X, GUO L. SERS Activity of semiconductors: crystalline and amorphous nanomaterials[J]. Angewandte Chemie International Edition, 2020, 59(11): 4231-4239.
doi: 10.1002/anie.v59.11 |
[36] |
WANG W, FENG Z Y, JIANG W, et al. Electrospun porous CuO-Ag nanofibers for quantitative sensitive SERS detection[J]. Crystengcomm, 2013, 15(7): 1339-1344.
doi: 10.1039/c2ce26591e |
[37] | ZHAO Y, SUN L, XI M, et al. Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced raman scattering[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5759-5767. |
[38] |
TANG W, CHASE D B, RABOLT J F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration:a 3D SERS substrate[J]. Analytical Chemistry, 2013, 85(22): 10702-10709.
doi: 10.1021/ac400241z |
[39] | LEE C H, TIAN L, ABBAS A, et al. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS sub-strates[J]. Nanotechnology, 2011. DOI: 10.1088/0957-4484/22/27/275311. |
[40] |
ZHAO X, LI C, LI Z, et al. In-situ electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface[J]. Nanophotonics, 2019, 8(10): 1719-1729.
doi: 10.1515/nanoph-2019-0124 |
[41] |
JALAJA K, BHUVANESWARI S, GANIGA M, et al. Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers[J]. Analytical Methods, 2017, 9(26): 3998-4003.
doi: 10.1039/C7AY00882A |
[42] |
SARAVANAN R K, NAQVI T K, PATIL S, et al. Purine-blended nanofiber woven flexible nanomats for SERS-based analyte detection[J]. Chemical Communications, 2020, 56(43): 5795-5798.
doi: 10.1039/d0cc00648c pmid: 32323673 |
[43] |
WANG L, ZHANG Y, ZHANG W Q, et al. Laser-induced plasmonic heating on silver nanoparticles/poly(N-isopropylacrylamide) mats for optimizing SERS detection[J]. Journal of Raman Spectroscopy, 2017, 48(2): 243-250.
doi: 10.1002/jrs.v48.2 |
[44] |
CHUNG M, SKINNER W H, ROBERT C, et al. Fabrication of a wearable flexible sweat ph sensor based on SERS-active Au/TPU electrospun nanofibers[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51504-51518.
doi: 10.1021/acsami.1c15238 |
[45] | YANG E, LI D, YIN P, et al. A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker[J]. Biosensors and Bioelectronics, 2021. DOI: 10.1016/j.bios.2020.112758. |
[46] |
CHEN D, ZHANG L, NING P, et al. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria[J]. Nano Research, 2021, 14(12): 4885-4893.
doi: 10.1007/s12274-021-3530-9 |
[47] |
YANG Y, ZHANG Z J, HE Y L, et al. Fabrication of Ag@TiO2 electrospinning nanofibrous felts as SERS substrate for direct and sensitive bacterial detection[J]. Sensors and Actuators B:Chemical, 2018, 273: 600-609.
doi: 10.1016/j.snb.2018.05.129 |
[48] | WAN M, ZHAO H, PENG L, et al. Loading of Au/Ag bimetallic nanoparticles within and outside of the flexible SiO2 electrospun nanofibers as highly sensitive, stable, repeatable substrates for versatile and trace SERS detection[J]. Polymers (Basel), 2020. DOI: 10.3390/polym12123008. |
[1] | 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239. |
[2] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[3] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[4] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[5] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[6] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[7] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[8] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[9] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
[10] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
[11] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[12] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[13] | 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26. |
[14] | 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33. |
[15] | 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40. |
|