纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 225-231.doi: 10.13475/j.fzxb.20220703602
PAN Luqi, REN Lipei, XIAO Xingfang, XU Weilin, ZHANG Qian()
摘要:
为深入探究具有能量转换效率高、清洁无污染的界面光热蒸发器,简要介绍了当前纤维基界面光热蒸发器表面除盐的研究进展,以及其在海水淡化与浓盐处理等领域的应用,探讨了界面蒸发过程中水分迅速逃逸导致的盐分析出抑制对光的吸收和堵塞蒸汽溢出通道的作用机制,以及产生的降低器件蒸汽产生速率及使用周期的影响。分析了基于纤维材料设计的除盐策略,包括主动式(水洗除盐与区域结晶盐收集)和被动式(自清洁设计、对流效应、定向流体传输与Janus织物设计)。最后,对纤维材料在太阳能界面蒸发器表面除盐设计所面临的挑战及未来潜在的应用前景进行总结与展望。
中图分类号:
[1] | MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016. DOI: 10.1126/sciadv.1500323. |
[2] |
CAO S, JIANG Q, WU X, et al. Advances in solar evaporator materials for freshwater generation[J]. J Mater Chem A, 2019, 7(42): 24092-24123.
doi: 10.1039/c9ta06034k |
[3] |
SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3245-3250.
doi: 10.1073/pnas.1222460110 pmid: 24344289 |
[4] |
COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608.
doi: 10.1021/nl3012853 |
[5] |
ELIMELECH M, PHILLIP William A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
doi: 10.1126/science.1200488 pmid: 21817042 |
[6] |
PUGSLEY A, ZACHAROPOULOS A, MONDOL J D, et al. Global applicability of solar desalination[J]. Renewable Energy, 2016, 88: 200-219.
doi: 10.1016/j.renene.2015.11.017 |
[7] | SHENG M, YANG Y, BIN X, et al. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106468. |
[8] | XU K, WANG C, LI Z, et al. Salt mitigation strategies of solar-driven interfacial desalination[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202007855. |
[9] | YU X, ZHANG Q, LIU X, et al. Salt-resistive photothermal materials and microstructures for interfacial solar desalination[J]. Frontiers in Energy Research, 2021.DOI: 10.3389/fenrg.2021.721407. |
[10] | REN H, TANG M, GUAN B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201702590. |
[11] | HE J, ZHANG Z, XIAO C, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16308-16318. |
[12] |
BUSH J A, VANNESTE J, CATH T Y. Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: effects of scaling and fouling on performance, efficiency, and salt rejection[J]. Separation and Purification Technology, 2016, 170: 78-91.
doi: 10.1016/j.seppur.2016.06.028 |
[13] |
HOEPNER T, LATTEMANN S. Chemical impacts from seawater desalination plants: a case study of the northern Red Sea[J]. Desalination, 2003, 152(1): 133-140.
doi: 10.1016/S0011-9164(02)01056-1 |
[14] | ANDRÉS-MAÑAS J A, ROCA L, RUIZ-AGUIRRE A, et al. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2019.114068. |
[15] |
JIA C, LI Y, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam gener-ation[J]. Joule, 2017, 1(3): 588-599.
doi: 10.1016/j.joule.2017.09.011 |
[16] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(1): 36-42. |
DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emis-sion[J]. Journal of Textile Research, 2022, 43(1): 36-42. | |
[17] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42(12): 166-173. | |
[18] | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
[19] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. J Mater Chem A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A |
[20] |
FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709.
doi: 10.1021/acs.est.7b03040 |
[21] |
SHI Y, ZHANG C, LI R, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830.
doi: 10.1021/acs.est.8b03300 |
[22] |
LEI Z, SUN X, ZHU S, et al. Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 1-10.
doi: 10.1007/s40820-021-00751-y |
[23] | LIU Z, ZHONG Q, WU N, et al. Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy[J]. Desalination, 2021. DOI: 10.1016/j.desal.2021.115072. |
[24] |
XIA Y, LI Y, YUAN S, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. J Mater Chem A, 2020, 8(32): 16212-16217.
doi: 10.1039/D0TA04677A |
[25] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalin-ation[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
[26] |
ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. J Mater Chem A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A |
[27] | LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49860-49867. |
[28] | ZHANG Y, ZHANG H, XIONG T, et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation[J]. Energy & Environmental Science, 2020, 13(12): 4891-4902. |
[29] | LIU Z, WU B, ZHU B, et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201905485. |
[30] |
LIU Z, ZHOU Z, WU N, et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021, 15(8): 13007-13018.
doi: 10.1021/acsnano.1c01900 pmid: 34309381 |
[31] |
YAO C, LUO M, WANG H, et al. Asymmetric wetting Janus fabrics with double-woven structure for oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5942-5951.
doi: 10.1007/s10853-018-03241-6 |
[32] | XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018.DOI: 10.1002/aenm.201702884. |
[33] | DONG X, LI H, GAO L, et al. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery[J]. Small, 2022.DOI: 10.1002/smll.202107156. |
[34] | 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123. |
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123. | |
[35] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[36] |
BU Y, ZHOU Y, LEI W, et al. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J]. J Mater Chem A, 2022, 10(6): 2856-2866.
doi: 10.1039/D1TA09288J |
[37] | KUNJARAM U P U, SONG H, LIU Y, et al. A self-salt-cleaning architecture in cold vapor generation system for hypersaline brines[J]. EcoMat, 2022.DOI: 10.1002/eom2.12168. |
[38] |
FANG Q, LI T, LIN H, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resist-ance[J]. ACS Applied Energy Materials, 2019, 2(6): 4354-4361.
doi: 10.1021/acsaem.9b00562 |
[39] | ZHANG Q, HU R, CHEN Y, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2020.115545. |
[40] | WEN C, GUO H, YANG J, et al. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex condit-ions[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.130344. |
[41] | DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201908269. |
[42] | GUO Y, JAVED M, LI X, et al. Solar-driven all-in-one interfacial water evaporator based on electrostatic flocking[J]. Advanced Sustainable Systems, 2021.DOI: 10.1002/adsu.202000202. |
[43] |
ZHAO G, CHEN Y, PAN L, et al. Plant-inspired design from carbon fiber toward high-performance salt-resistant solar interfacial evaporation[J]. Solar Energy, 2022, 233: 134-141.
doi: 10.1016/j.solener.2022.01.025 |
[44] | LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021.DOI: 10.1016/j.chemosphere.2020.128916. |
[45] | GAO T, WU X, WANG Y, et al. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss[J]. Solar RRL, 2021.DOI: 10.1002/solr.202100053. |
[46] |
WU X, WU L, TAN J, et al. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy[J]. J Mater Chem A, 2018, 6(26): 12267-12274.
doi: 10.1039/C8TA03280G |
[47] |
ZHANG Q, YANG H, XIAO X, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam[J]. J Mater Chem A, 2019, 7(24): 14620-14628.
doi: 10.1039/C9TA03045J |
[48] | GAO S, DONG X, HUANG J, et al. Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection[J]. Global Challenges, 2019, 3(8): 1-7. |
[49] |
ZHANG W-M, YAN J, SU Q, et al. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance[J]. Journal of Colloid and Interface Science, 2022, 612: 66-75.
doi: 10.1016/j.jcis.2021.12.093 |
[50] | LI S, QIU F, XIA Y, et al. Integrating a self-floating janus TPC@CB sponge for efficient solar-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19409-19418. |
[1] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[2] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[3] | 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47. |
[4] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[5] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[6] | 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73. |
[7] | 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98. |
[8] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[9] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[10] | 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215. |
[11] | 张永芳, 费鹏飞, 阎智锋, 王淑花, 郭红. 废弃纤维素纺织品水热降解技术的研究进展[J]. 纺织学报, 2023, 44(12): 216-224. |
[12] | 师红宇, 位营杰, 管声启, 李怡. 基于残差结构的棉花异性纤维检测算法[J]. 纺织学报, 2023, 44(12): 35-42. |
[13] | 李玲, 丁倩, 汪军. 转杯纺并合效应模型的构建与解析[J]. 纺织学报, 2023, 44(12): 43-49. |
[14] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[15] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
|