纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 27-35.doi: 10.13475/j.fzxb.20220701601
WANG Xixian(), GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin
摘要:
为实现高效低阻的过滤效果,将具有抗菌性能的纳米银颗粒掺杂在聚丙烯腈(PAN)溶液中,利用静电纺丝技术制备了PAN/Ag复合纳米纤维膜,对其微观结构进行观察,测试了纳米纤维膜的透气性能、透湿性能、润湿性能和过滤性能。结果表明:在纳米银质量分数为0.9%,纺丝时间为30 min时,PAN/Ag复合纳米纤维膜的过滤效率达到99.38%,阻力压降为43.12 Pa,品质因子达到最高0.117 9 Pa-1,透气率为539.1 mm/s,水接触角为112.5°,具有较好的透湿率;将PAN/Ag复合纳米纤维膜静置365 d后安装在空调滤芯上,还可保持有优良的过滤性能。本文研究拓宽了纳米空气滤材在实际生活中的应用范围,有望在精准过滤领域实现应用。
中图分类号:
[1] | CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, et al. Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121545. |
[2] |
CHOWDHURY S, DEY S, SMITH K R. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios[J]. Nature Communications, 2018, 9(1): 1-10.
doi: 10.1038/s41467-017-02088-w |
[3] |
XU Xin, NIE Sheng, DING Hanying, et al. Environmental pollution and kidney diseases[J]. Nature Reviews Nephrology, 2018, 14(5): 313-324.
doi: 10.1038/nrneph.2018.11 pmid: 29479079 |
[4] | ZHANG Zhenfang, JI Dongxiao, HE Haijun, et al. Electrospun ultrafine fibers for advanced face masks[J]. Materials Science and Engineering: Reports, 2021. DOI:10.1016/j.mser.2020.100594. |
[5] | GAO Hanchao, HE Weidong, ZHAO Yibo, et al. Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2020.117879. |
[6] |
BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347.
doi: 10.1016/j.biotechadv.2010.01.004 pmid: 20100560 |
[7] |
WANG Xianfeng, DING Bin, SUN Gang, et al. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.
doi: 10.1016/j.pmatsci.2013.05.001 pmid: 32287484 |
[8] | 丁彬. 功能微纳米聚合物纤维材料[J]. 高分子学报, 2019, 50(8): 764-774. |
DING Bin. Functional polymeric micro/nano-fibrous materials[J]. Acta Polymerica Sinica, 2019, 50(8): 764-774.
doi: 10.11777/j.issn1000-3304.2019.19069 |
|
[9] |
MAHAPATRA A, GARG N, NAYAK B P, et al. Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application[J]. Journal of Applied Polymer Science, 2012, 124(2): 1178-1185.
doi: 10.1002/app.v124.2 |
[10] | LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5capture[J]. Nature Communications, 2015, 6(1): 1-9. |
[11] |
KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(1): 95-101.
doi: 10.1016/j.nano.2006.12.001 |
[12] |
RUJITANAROJ P O, PIMPHA N, SUPAPHOL P. Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles[J]. Journal of Applied Polymer Science, 2010, 116(4):1967-1976.
doi: 10.1002/app.v116:4 |
[13] |
CASTELLANO J J, SHAFII S M, KO F, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs[J]. International Wound Journal, 2007, 4(2): 114-122.
doi: 10.1111/j.1742-481X.2007.00316.x pmid: 17651227 |
[14] |
SHALABY T, HAMAD H, IBRAHIM E, et al. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity[J]. Ecotoxicology and Environmental Safety, 2018, 162(10):354-364.
doi: 10.1016/j.ecoenv.2018.07.016 |
[15] |
ZHANG Zhijie, WU Yunping, WANG Zhihua, et al. Electrospinning of Ag nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties[J]. Materials Science and Engineering: C, 2017, 78:706-714.
doi: 10.1016/j.msec.2017.04.138 |
[16] |
WANG Chenrong, WANG Wei, ZHANG Lishan, et al. Electrospinning of PAN/Ag NPs nanofiber membrane with antibacterial properties[J]. Journal of Materials Research, 2019, 34(10):1669-1677.
doi: 10.1557/jmr.2019.44 |
[17] |
LALA N L, RAMASESHAN R, LI B, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2010, 97(6): 1357-1365.
doi: 10.1002/bit.v97:6 |
[18] | XIAO Yuanxiang, WANG Yan, ZHU Wenni, et al. Development of tree-like nanofibrous air filter with durable antibacterial property[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.118135. |
[19] | 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20. |
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6): 14-20. | |
[20] |
NAVALADIAN S, VISWANATHAN B, VISWANANTH R P, et al. Thermal decomposition as route for silver nanoparticles[J]. Nanoscale Research Letters, 2007, 2(1): 44-48.
doi: 10.1007/s11671-006-9028-2 |
[21] |
ZHANG Haitao, NIE Huali, YU Dengguang, et al. Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption[J]. Desalination, 2010, 256(1-3): 141-147.
doi: 10.1016/j.desal.2010.01.026 |
[22] |
PATEL S, HOTA G. Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane[J]. Fibers and Polymers, 2014, 15(11):2272-2282.
doi: 10.1007/s12221-014-2272-7 |
[23] |
REHAN M, NADA A A, KHATTAB T A, et al. Development of multifunctional polyacrylonitrile/silver nanocomposite films: antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor[J]. Journal of Materials Research and Technology, 2020, 9(4):9380-9394.
doi: 10.1016/j.jmrt.2020.05.079 |
[24] |
SICHANI G N, MORSHED M, AMIRNASR M, et al. In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles[J]. Journal of Applied Polymer Science, 2010, 116(2):1021-1029.
doi: 10.1002/app.v116:2 |
[25] | FLORENCE A T, ELWORTHY P H, RAHMAN A. The influence of solution viscosity on the dissolution rate of soluble salts, and the measurement of an "effective" viscosity[J]. Journal of Pharmacy & Pharmacology, 2011, 25(10):779-786. |
[26] |
ROBERT N Wenzel. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53 (9): 1466-1467.
doi: 10.1021/j150474a015 |
[27] |
PODGÓRSKI A, BALAZY A, GRADO L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61(20):6804-6815.
doi: 10.1016/j.ces.2006.07.022 |
[28] | ALMUHAMED S, KHENOUSSI N, SCHACHER L, et al. Measuring of electrical properties of MWNT-reinforced PAN nanocomposites[J]. Journal of Nanomaterials, 2012, 14: 1-7. |
[29] |
CAI Rongrong, ZHANG Lizhi, BAO Aibing. PM collection performance of electret filters electrospun with different dielectric materials: a numerical modeling and experimental study[J]. Building and Environment, 2018, 131: 210-219.
doi: 10.1016/j.buildenv.2017.12.036 |
[30] | WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23985-23994. |
[31] |
ZHU Mengni, CAO Qiping, LIU Bingyang, et al. A novel cellulose acetate/poly (ionic liquid) composite air filter[J]. Cellulose, 2020, 27(7): 3889-3902.
doi: 10.1007/s10570-020-03034-8 |
[32] |
CHAVHAN M, MUKHOPADHYAY A. Fibrous filter to protect building environments from polluting agents: a review[J]. Journal of the Institution of Engineers (India): Series E, 2016, 97(1): 63-73.
doi: 10.1007/s40034-015-0071-3 |
[33] |
LI Yuyao, YIN Xia, YU Jianyong, et al. Electrospun nanofibers for high-performance air filtration[J]. Composites Communications, 2019, 15: 6-19.
doi: 10.1016/j.coco.2019.06.003 |
[34] | MOHRAZ M H, YU I J, BEITOLLAHI A, et al. Assessment of the potential release of nanomaterials from electrospun nanofiber filter media[J]. NanoImpact, 2020. DOI:10.1016/j.impact.2020.100223. |
[1] | 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22. |
[2] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[3] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[4] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[5] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[6] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[7] | 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34. |
[8] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[9] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[10] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[11] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
[12] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
[13] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[14] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[15] | 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26. |
|