纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 27-35.doi: 10.13475/j.fzxb.20220701601

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能

王西贤(), 郭天光, 王登科, 牛帅, 贾琳   

  1. 河南工程学院 纺织工程学院, 河南 郑州 450007
  • 收稿日期:2022-07-06 修回日期:2023-07-04 出版日期:2023-11-15 发布日期:2023-12-25
  • 作者简介:王西贤(1982—),男,讲师,硕士。主要研究方向为功能性纳米纤维。E-mail: mauricewzy@163.com
  • 基金资助:
    河南省科技厅科技攻关项目(222102320150);河南省高校重点科研项目(21B540001);河南工程学院科研培育基金项目(PYXM202106);河南省高校大学生创新创业训练计划项目(202211517005)

Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration

WANG Xixian(), GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin   

  1. College of Textiles Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2022-07-06 Revised:2023-07-04 Published:2023-11-15 Online:2023-12-25

摘要:

为实现高效低阻的过滤效果,将具有抗菌性能的纳米银颗粒掺杂在聚丙烯腈(PAN)溶液中,利用静电纺丝技术制备了PAN/Ag复合纳米纤维膜,对其微观结构进行观察,测试了纳米纤维膜的透气性能、透湿性能、润湿性能和过滤性能。结果表明:在纳米银质量分数为0.9%,纺丝时间为30 min时,PAN/Ag复合纳米纤维膜的过滤效率达到99.38%,阻力压降为43.12 Pa,品质因子达到最高0.117 9 Pa-1,透气率为539.1 mm/s,水接触角为112.5°,具有较好的透湿率;将PAN/Ag复合纳米纤维膜静置365 d后安装在空调滤芯上,还可保持有优良的过滤性能。本文研究拓宽了纳米空气滤材在实际生活中的应用范围,有望在精准过滤领域实现应用。

关键词: 过滤效率, 阻力压降, 聚丙烯腈, 纳米银, 纳米纤维, 高效低阻, 静电纺丝, 空气过滤

Abstract:

Objective Air pollution has become a serious threat to the environment and human health, and in particular PM0.3 and virus can hardly to be captured or intercepted by conventional filtering products. The nanofiber membranes with small diameters have high specific surface area, controllable porosity and morphology, and can effectively filter fine particles. However, most research in documents only deals with problems in the ideal state, without considering the long-lasting performance of the filter material. Finding filter materials that can achieve high efficiency and low pressure drop with long-lasting filter performance in practice is essential and necessary.

Method Polyacrylonitrile (PAN) nanofiber has good thermal stability, mechanical properties and solvent resistance, and the strong polar group —CN in PAN can enhance the mutual attraction between nanofiber and particulate matter. Ag nanoparticles (NPs) is widely used as functional additives in the fields of antibacterial materials, biology, and photocatalytic catalysts. In this research, the Ag NPs with antibacterial properties were mixed with PAN solution, and PAN/Ag composite nanofiber membranes were prepared by electrospinning technology. The morphology and structure of nanofibers were observed by field-emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectrometry. In addition, the permeability, humidity performance, wettability and filtering performance of nanofiber membrane were characterized.

Results The addition of Ag NPs changed the microstructure of nanofiber, and the standard deviation of PAN/Ag composite nanofiber membrane was significantly improved. The smallest diameter (180±38) nm was achieved when Ag NPs mass fraction was 0.5%(PAN/Ag-5), and the diameter of PAN/Ag composite nanofiber increased with the Ag NPs mass fraction went higher (Fig. 1). The FT-IR spectra of PAN and PAN/Ag expressed the characteristics of PAN typical absorption peaks (Fig. 3), suggesting the addition of Ag NPs did not change the chemical structure of PAN. The air permeability and moisture permeability of PAN/Ag composite nanofiber membrane decreased with the increase of Ag NPs mass fraction (Fig. 4). The smallest air permeability value was 456.9 mm/s when Ag NPs mass fraction was 0.5% and spinning time was 40 min which attribute to the smallest diameters and thickness of deposit. The smallest moisture permeability value was 1 586.32 g/(m2·d)when Ag NPs mass fraction was 1.5% and spinning time was 40 min. The results of water contact angle test showed that PAN nanofiber membrane had hydrophilicity because of the cyano group, on account of the smallest of diameter and standard deviation of PAN/Ag-5, the water contact angle is 112.5°, showing hydrophobicity. The trend of filtration efficiency and pressure drop curve were basically the same as the diameter of nanofiber (Fig. 5) because the both are closely related to the diameter and standard deviation of nanofiber. The filtration efficiency and pressure drop of PAN/Ag composite nanofiber membrane when Ag NPs mass fraction was 0.5% and spinning time was 40 min reached the highest value 99.935% and 99.381 Pa. In order to test the feasibility of PAN/Ag composite nanofiber membranes in practical applications, the nanofiber membranes were stored statically in the dust cover for 365 d before testing, and found that the gas flow rate remained between 32 and 85 L/min, indicating that the nanofiber membranes maintained excellent filtration performance (Fig. 6). The filtration efficiency and pressure drop of the nanofiber membranes after standing for 365 d decreased partly, on account of the electret effect was reduced because of some shallow trap and even the charge of the deep trap will escape to neutralize the water molecules on the surface of the membrane, the effect of electrostatic adsorption was weakened. The nanofiber membranes prepared with the best experimental parameters were fitted on the filter element of the air conditioner (Fig. 8), and the results showed that the nanofiber membrane could effectively filter the particles produced by burning sandalwood(simulate severe air pollution) in the air to avoid secondary pollution.

Conclusion In general, the best experimental parameters selected from the aspects of filter performance was mass fraction of Ag NPs 0.5%, and the spinning time is 30 min. The obtained results implied that nanofiber membrane can effectively filter the particles in the air to avoid secondary pollution with high efficiency, low pressure drop as well as long-lasting filter performance in practice. The research findings broaden the application scope of nanofiber filters in practical life, and are expected to open up efficient, sustainable, and new implementation approach in the field of precise filtering.

Key words: filtration efficiency, pressure drop, polypropylene, Ag nanoparticle, nanofiber, high efficiency low resistance, electrospinning, air filtration

中图分类号: 

  • TS102.6

图1

添加不同质量分数钠米银颗粒的纳米纤维膜的直径分布图和SEM照片"

图2

纺丝溶液的黏度与电导率"

图3

PAN和PAN/Ag复合纳米纤维膜的红外光谱图"

图4

不同纺丝时间下PAN和PAN/Ag复合纳米纤维膜的透气、透湿性能和水接触角"

图5

PAN和PAN/Ag复合纳米纤维膜的过滤效率和阻力压降"

图6

PAN和PAN/Ag复合纳米纤维膜放置365 d后的过滤效率和阻力压降"

图7

PAN和PAN/Ag复合纳米纤维膜的品质因子"

图8

PAN/Ag复合纳米纤维膜过滤颗粒物前后的外观变化"

[1] CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, et al. Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121545.
[2] CHOWDHURY S, DEY S, SMITH K R. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios[J]. Nature Communications, 2018, 9(1): 1-10.
doi: 10.1038/s41467-017-02088-w
[3] XU Xin, NIE Sheng, DING Hanying, et al. Environmental pollution and kidney diseases[J]. Nature Reviews Nephrology, 2018, 14(5): 313-324.
doi: 10.1038/nrneph.2018.11 pmid: 29479079
[4] ZHANG Zhenfang, JI Dongxiao, HE Haijun, et al. Electrospun ultrafine fibers for advanced face masks[J]. Materials Science and Engineering: Reports, 2021. DOI:10.1016/j.mser.2020.100594.
[5] GAO Hanchao, HE Weidong, ZHAO Yibo, et al. Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2020.117879.
[6] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347.
doi: 10.1016/j.biotechadv.2010.01.004 pmid: 20100560
[7] WANG Xianfeng, DING Bin, SUN Gang, et al. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.
doi: 10.1016/j.pmatsci.2013.05.001 pmid: 32287484
[8] 丁彬. 功能微纳米聚合物纤维材料[J]. 高分子学报, 2019, 50(8): 764-774.
DING Bin. Functional polymeric micro/nano-fibrous materials[J]. Acta Polymerica Sinica, 2019, 50(8): 764-774.
doi: 10.11777/j.issn1000-3304.2019.19069
[9] MAHAPATRA A, GARG N, NAYAK B P, et al. Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application[J]. Journal of Applied Polymer Science, 2012, 124(2): 1178-1185.
doi: 10.1002/app.v124.2
[10] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5capture[J]. Nature Communications, 2015, 6(1): 1-9.
[11] KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(1): 95-101.
doi: 10.1016/j.nano.2006.12.001
[12] RUJITANAROJ P O, PIMPHA N, SUPAPHOL P. Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles[J]. Journal of Applied Polymer Science, 2010, 116(4):1967-1976.
doi: 10.1002/app.v116:4
[13] CASTELLANO J J, SHAFII S M, KO F, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs[J]. International Wound Journal, 2007, 4(2): 114-122.
doi: 10.1111/j.1742-481X.2007.00316.x pmid: 17651227
[14] SHALABY T, HAMAD H, IBRAHIM E, et al. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity[J]. Ecotoxicology and Environmental Safety, 2018, 162(10):354-364.
doi: 10.1016/j.ecoenv.2018.07.016
[15] ZHANG Zhijie, WU Yunping, WANG Zhihua, et al. Electrospinning of Ag nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties[J]. Materials Science and Engineering: C, 2017, 78:706-714.
doi: 10.1016/j.msec.2017.04.138
[16] WANG Chenrong, WANG Wei, ZHANG Lishan, et al. Electrospinning of PAN/Ag NPs nanofiber membrane with antibacterial properties[J]. Journal of Materials Research, 2019, 34(10):1669-1677.
doi: 10.1557/jmr.2019.44
[17] LALA N L, RAMASESHAN R, LI B, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2010, 97(6): 1357-1365.
doi: 10.1002/bit.v97:6
[18] XIAO Yuanxiang, WANG Yan, ZHU Wenni, et al. Development of tree-like nanofibrous air filter with durable antibacterial property[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.118135.
[19] 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20.
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6): 14-20.
[20] NAVALADIAN S, VISWANATHAN B, VISWANANTH R P, et al. Thermal decomposition as route for silver nanoparticles[J]. Nanoscale Research Letters, 2007, 2(1): 44-48.
doi: 10.1007/s11671-006-9028-2
[21] ZHANG Haitao, NIE Huali, YU Dengguang, et al. Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption[J]. Desalination, 2010, 256(1-3): 141-147.
doi: 10.1016/j.desal.2010.01.026
[22] PATEL S, HOTA G. Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane[J]. Fibers and Polymers, 2014, 15(11):2272-2282.
doi: 10.1007/s12221-014-2272-7
[23] REHAN M, NADA A A, KHATTAB T A, et al. Development of multifunctional polyacrylonitrile/silver nanocomposite films: antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor[J]. Journal of Materials Research and Technology, 2020, 9(4):9380-9394.
doi: 10.1016/j.jmrt.2020.05.079
[24] SICHANI G N, MORSHED M, AMIRNASR M, et al. In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles[J]. Journal of Applied Polymer Science, 2010, 116(2):1021-1029.
doi: 10.1002/app.v116:2
[25] FLORENCE A T, ELWORTHY P H, RAHMAN A. The influence of solution viscosity on the dissolution rate of soluble salts, and the measurement of an "effective" viscosity[J]. Journal of Pharmacy & Pharmacology, 2011, 25(10):779-786.
[26] ROBERT N Wenzel. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53 (9): 1466-1467.
doi: 10.1021/j150474a015
[27] PODGÓRSKI A, BALAZY A, GRADO L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61(20):6804-6815.
doi: 10.1016/j.ces.2006.07.022
[28] ALMUHAMED S, KHENOUSSI N, SCHACHER L, et al. Measuring of electrical properties of MWNT-reinforced PAN nanocomposites[J]. Journal of Nanomaterials, 2012, 14: 1-7.
[29] CAI Rongrong, ZHANG Lizhi, BAO Aibing. PM collection performance of electret filters electrospun with different dielectric materials: a numerical modeling and experimental study[J]. Building and Environment, 2018, 131: 210-219.
doi: 10.1016/j.buildenv.2017.12.036
[30] WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23985-23994.
[31] ZHU Mengni, CAO Qiping, LIU Bingyang, et al. A novel cellulose acetate/poly (ionic liquid) composite air filter[J]. Cellulose, 2020, 27(7): 3889-3902.
doi: 10.1007/s10570-020-03034-8
[32] CHAVHAN M, MUKHOPADHYAY A. Fibrous filter to protect building environments from polluting agents: a review[J]. Journal of the Institution of Engineers (India): Series E, 2016, 97(1): 63-73.
doi: 10.1007/s40034-015-0071-3
[33] LI Yuyao, YIN Xia, YU Jianyong, et al. Electrospun nanofibers for high-performance air filtration[J]. Composites Communications, 2019, 15: 6-19.
doi: 10.1016/j.coco.2019.06.003
[34] MOHRAZ M H, YU I J, BEITOLLAHI A, et al. Assessment of the potential release of nanomaterials from electrospun nanofiber filter media[J]. NanoImpact, 2020. DOI:10.1016/j.impact.2020.100223.
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[3] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[4] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[5] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[6] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[7] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[8] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[9] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[10] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[11] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[12] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[13] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!