纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 67-73.doi: 10.13475/j.fzxb.20220708601

• 纺织工程 • 上一篇    下一篇

镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑

范梦晶1, 吴玲娅1, 周歆如1, 洪剑寒1,2(), 韩潇1,2, 王建1,2   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2022-07-25 修回日期:2022-11-03 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 洪剑寒(1982—),男,教授,博士。主要研究方向为新型纺织材料的制备与应用。E-mail:jhhong@usx.edu.cn
  • 作者简介:范梦晶(1998—),女,硕士生。主要研究方向为智能服装柔性器件的设计开发与应用。
  • 基金资助:
    纺织行业智能服装柔性器件重点实验室开放课题项目(SDHY2112)

Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn

FAN Mengjing1, WU Lingya1, ZHOU Xinru1, HONG Jianhan1,2(), HAN Xiao1,2, WANG Jian1,2   

  1. 1. School of Textile and Apparel, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
  • Received:2022-07-25 Revised:2022-11-03 Published:2023-11-15 Online:2023-12-25

摘要:

为获得线形螺旋结构且具有良好传感性能的大应变柔性应变-电容传感器,采用水浴静电纺丝法以镀银聚酰胺6为芯纱,制备了镀银聚酰胺6/聚酰胺6纳米纤维包芯纱,并将其缠绕在橡筋上制备应变-电容式柔性传感器。对纳米纤维包芯纱的结构与力学性能进行表征与测试,分析了应变-电容传感器的传感性能,并探索了其在人体运动监测中的应用。结果表明:聚酰胺6纳米纤维在镀银聚酰胺6表面形成结构完整的包覆层,直径分布主要在80~100 nm范围内,平均直径为95.53 nm;相较于芯纱,纳米纤维包芯纱的力学性能基本保持不变;制备的柔性传感器表现出良好的应变-电容传感性能,在6.67%的应变下敏感因子可达3.93,并具有良好的重复性,该传感器可用于人体运动的实时监测。

关键词: 水浴静电纺丝, 聚酰胺6, 纳米纤维包芯纱, 线状螺旋结构, 电容传感器, 运动监测

Abstract:

Objective Wearable technology is currently one of the most promising fields and as a key component for wearable devices, flexible sensors are crucial to the development of intelligent wearable products. Sensing performance is the only criterion for the quality of a sensor. It is of great significance to propose a new one-dimensional flexible strain-capacitive sensor with good sensing performance.

Method Adopting the method of water bath electrospinning, experimental parameters were set with spinning solution concentration of 12%, electrostatic voltage of 20 kV, spinneret rate of 0.2 mL/h, core yarn winding speed of 0.16 m/min, and receiving distance of 5 cm. Silver coated polyamide 6(SCN) was chosen as the core yarn (capacitor electrode plate), and polyamide 6(PA6) nanofiber was used as the coating layer (dielectric layer) to prepare the silver coated polyamide 6/polyamide 6 (SCN/PA6) nanofiber core-spun yarn, which was wound on the rubber band to prepare the strain-capacitive flexible sensor. The human knee was selected as the experimental test site, and the test subjects performed intermittent knee bending, continuous knee bending, and walking on the treadmill at different speeds, and the capacitance changes of the sensor during the movement were recorded by the capacitance tester in real time.

Results By observing the structure morphology of SCN, analyzing the mechanical properties, and testing the sensing performance and practical application of the sensor, the following conclusions were obtained. PA6 nanofiber coating with complete structure was formed by electrospinning on the surface of SCN fiber (Fig. 4), with a thickness of 15-20 μm. The diameter distribution of nanofibers (Fig. 5) was uniform, mainly in the range of 80-100 nm, with an average diameter of 95.53 nm. Compared with the core yarn, the breaking strength and elongation at break of the nanofiber core-spun yarn were slightly increased and slightly decreased (Fig. 6), but the changes were small. The relative capacitance of the prepared sensor showed a decrease with the increase of elongation during stretching, while the recovery followed the opposite pattern, and the decreasing trend of the minimum capacitance gradually slows down (Fig. 7). When the elongation was small (6.67%), the linear fitting equation obtained with the elongation as the independent variable and Cp/C0 as the dependent variable had a correlation coefficient as high as 0.988 6 (Tab. 1), showing good linearity. The sensitivity of the sensor gradually decreased with the increase of the elongation. When the elongation was 6.67%, the gauge factor value reached 3.93, while when the elongation was 66.67%, the gauge factor value was only 0.90 (Tab. 2). The maximum Cp/C0 value of the sensor was about 1 for each stretch cycle of 450 s at different elongations, and the minimum Cp/C0 value was close to the minimum Cp/C0 value of the single stretch (Fig. 9), showing good repeatability stability. The variation of stretching speed has almost no effect on the relative capacitance of the sensor.

Conclusion By placing the sensor on the knee for intermittent, continuous bending and walking movements, regular and stable capacitance signal changes were obtained (Fig. 11), and Cp/C0 values fluctuated stably between 0.6 and 1.0. According to the calculation and analysis of the signal changes at different speeds, the number and frequency of steps of the experimenter can be obtained (at speed of 3 km/h, the frequency is 86.4 steps/min; at speed of 4 km/h, the frequency is 107.2 steps/min; at speed of 6 km/h, the frequency is 151.8 steps/min). The strain sensor has potential applications in the field of real-time monitoring of flexible wearable human motion. It is suggested to select materials with better performance and improve the design of the structure to better play its original value.

Key words: water bath electrospinning, polyamide 6, nanofiber core-spun yarn, linear spiral structure, capacitive sensor, movement monitoring

中图分类号: 

  • TS101.922

图1

水浴静电纺丝装置示意图"

图2

应变-电容传感器的制备过程"

图3

应变-电容传感器的传感性能测试装置"

图4

SCN/PA6纳米纤维包芯纱的形貌"

图5

SCN/PA6纳米纤维直径分布"

图6

纳米纤维包芯纱和芯纱的负荷-伸长曲线"

图7

拉伸距离对传感器相对电容值的影响"

图8

应变-电容传感器传感原理"

表1

线形拟合方程"

伸长率/% 线性拟合方程 相关系数r
6.67 y=-0.036 3x+0.99 0.988 6
13.33 y=-0.026 7x+0.964 1 0.978 7
20.00 y=-0.020 6x+0.934 8 0.963 8
26.67 y=-0.015 9x+0.884 3 0.936 9
33.33 y=-0.013 1x+0.871 3 0.928 7
40.00 y=-0.011 6x+0.858 2 0.920 7
46.67 y=-0.01x+0.849 7 0.919 5
53.33 y=-0.008 7x+0.811 2 0.913 6
60.00 y=-0.008x+0.813 9 0.906 8
66.67 y=-0.007 2x+0.798 0.905 2

表2

传感器在不同伸长率下的敏感系数"

伸长率/
%
Cp/C0
低值
敏感
系数
伸长率/
%
Cp/C0
低值
敏感
系数
6.67 0.737 71 3.93 40.00 0.461 74 1.35
13.33 0.633 17 2.75 46.67 0.445 95 1.19
20.00 0.569 70 2.15 53.33 0.420 56 1.09
26.67 0.525 76 1.78 60.00 0.410 14 0.98
33.33 0.494 72 1.52 66.67 0.400 19 0.90

图9

传感器拉伸循环重复稳定性"

图10

拉伸速度对传感器相对电容的影响"

图11

传感器对膝部不同运动的监测"

[1] CHEN D, CHEN T, LI Y, et al. A flexible sensor based on 3D gold @carbonaceous nanohybrid with defect sites of conductivity for the wearable sensing at low stress[J]. Nano, 2021. DOI:10.1142/S1793292021 500442.
[2] ALAM N N, FAIZ R, IMAM M H. Development of a low-cost textile sensor based insole to monitor foot pressure of diabetic patients[J]. Journal of Medical Engineering & Technology, 2022, 46(4): 288-299.
[3] PIGNANELLI J, SCHLINGMAN K, CARMICHAEL T B, et al. A comparative analysis of capacitive-based flexible PDMS pressure sensors[J]. Sensors and Actuators A: Physical, 2019, 285: 427-436.
doi: 10.1016/j.sna.2018.11.014
[4] BAEK S, JANG H, KIM S Y, et al. Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas[J]. RSC Advances, 2017, 7(63): 39420-39426.
doi: 10.1039/C7RA06997A
[5] SHUAI X, ZHU P, ZENG W, et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324.
[6] ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors for facile fabric integration without compromise of wearability[J]. Advanced Materials Technologies, 2019. DOI:10.1002/admt.201900485.
[7] KIM S R, KIM J H, PARK J W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26407-26416.
[8] CHHETRY A, YOON H, PARK J Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5(38): 10068-10076.
doi: 10.1039/C7TC02926H
[9] 肖渊, 李红英, 李倩, 等. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(5):79-83.
XIAO Yuan, LI Hongying, LI Qian, et al. Fabrication of flexible pressure sensor with fabric/polydimethylsiloxane composite dielectric layer[J]. Journal of Textile Research, 2021, 42(5):79-83.
[10] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2433-2439.
doi: 10.1002/adma.v27.15
[11] LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles[J]. Science, 2015, 349(6246): 400-404.
doi: 10.1126/science.aaa7952
[12] 佑晓露. 基于纳米纤维包芯纱的压力传感器的制备及性能表征[J]. 上海纺织科技, 2018, 46(11):24-27.
YOU Xiaolu. Preparation and characterization of pressure sensor based on nano-fiber core-spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(11):24-27.
[13] 胡铖烨, 马金星, 周歆如, 等. 基于水浴静电纺的芳纶/PA6纳米纤维包芯纱制备与表征[J]. 丝绸, 2022, 59(1):31-37.
HU Chengye, MA Jinxing, ZHOU Xinru, et al. Preparation and characterization of PPTA/PA6 nanofiber core-spun yarn based on water bath electrospinning[J]. Journal of Silk, 2022, 59(1):31-37.
[14] 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9):95-100.
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9):95-100.
[1] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[2] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[3] 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8.
[4] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[5] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[6] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[7] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[8] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[9] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[10] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[11] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[12] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[13] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[14] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[15] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!